Firmware Log Analysis Server – README | MCP Marketplace

✨ From vibe coding to vibe deployment. UBOS MCP turns ideas into infra with one message.

Learn more

🔧 MCP Firmware Log Analysis Server

An intelligent, AI-powered firmware log analysis system built with GPT-4 integration for embedded systems debugging. This comprehensive tool helps firmware developers quickly identify, analyze, and resolve critical issues in embedded systems through automated log parsing and expert-level analysis.

License Python FastAPI OpenAI

🌟 Features

🤖 AI-Powered Analysis

  • GPT-4 Integration: Expert-level firmware debugging insights
  • Root Cause Analysis: Identifies specific issues and failure patterns
  • Actionable Recommendations: Provides concrete debugging steps
  • Confidence Scoring: 90-95% accuracy for critical issues
  • Module Identification: Pinpoints likely source files and functions

🔍 Comprehensive Log Parsing

  • Multi-Format Support: .log, .txt, .json files
  • Event Detection: Hard faults, watchdog resets, sensor failures, assertions, panics
  • Timeline Analysis: Correlates events across time sequences
  • Memory Address Parsing: Extracts stack traces and memory addresses
  • Metadata Extraction: System info, timestamps, error codes

🛠️ Advanced Debugging Features

  • Symbol Resolution: ELF binary analysis with addr2line integration
  • Stack Trace Analysis: Detailed call stack examination
  • Hardware Fault Detection: Bus faults, memory errors, peripheral failures
  • Boot Sequence Analysis: Startup and initialization issue detection

📊 Rich Reporting

  • HTML Reports: Beautiful, styled analysis reports with interactive elements
  • JSON API: Structured data for integration
  • Markdown Export: Documentation-ready format
  • Event Timelines: Visual event correlation
  • Technical Details: Memory addresses, register states, system context

🌐 Multiple Interfaces

  • Web Interface: Drag-and-drop file upload at http://localhost:8000
  • REST API: Programmatic integration endpoints
  • CLI Tool: Command-line analysis for automation
  • Batch Processing: Multiple file analysis support

📁 Live Demo & Sample Reports

🧪 Comprehensive Test Logs

Explore our realistic test scenarios in /test_logs/:

  • sample_crash.log - Hard fault with I2C sensor failure
  • sample_watchdog.log - Watchdog reset with sensor timeout
  • sample_json.log - JSON format assertion failure
  • sample_stack_overflow.log - Recursive function stack overflow (NEW!)
  • sample_boot_failure.log - I2C bus stuck during system initialization (NEW!)
  • sample_memory_corruption.log - Heap corruption with buffer overflows (NEW!)

📊 Real AI-Generated Reports ✨

See actual GPT-4 analysis in action in /sample_reports/:

  • stack_overflow_analysis.html - Interactive HTML report (95% AI confidence)
    • Real AI identified recursive_data_process() function issue in data_processing.c
  • memory_corruption_analysis.md - Professional Markdown documentation (95% AI confidence)
    • Real AI detected heap corruption at specific address 0x20008300
  • crash_analysis.json - Structured JSON API response (90% AI confidence)
    • Real AI diagnosed I2C sensor communication failure at address 0x48

Real AI Performance Metrics:

  • 🎯 90-95% AI Confidence with actual GPT-4 analysis
  • ⚡ 8-10 Second Processing per firmware log
  • 🔍 Specific Root Causes with function names and memory addresses
  • 💡 Actionable Code Fixes with before/after implementations
  • 🛡️ Hardware Troubleshooting with component-level diagnostics
  • 📊 Production Ready with JSON API integration

Important: These are real AI-generated reports from live GPT-4 analysis, not manually created examples. Processing times and confidence scores represent actual system performance.

🚀 Quick Start

Prerequisites

  • Python 3.8+
  • OpenAI API key (for GPT-4 analysis)
  • Optional: addr2line tool (for ELF symbol resolution)

Installation

  1. Clone the repository
git clone https://github.com/ashishdhiman23/mcp-firmware-agent.git
cd mcp-firmware-agent
  1. Install dependencies
pip install -r requirements.txt
  1. Configure environment
# Create .env file
echo "OPENAI_API_KEY=your_openai_api_key_here" > .env
  1. Start the server
# Easy method (recommended)
python run_server.py

# Or using uvicorn directly
python -m uvicorn src.api.main:app --host 0.0.0.0 --port 8000
  1. Open web interface
open http://localhost:8000

📚 Usage Examples

Web Interface

  1. Navigate to http://localhost:8000
  2. Upload your firmware log file
  3. View comprehensive analysis results
  4. Download HTML/Markdown reports

REST API

# Analyze a log file
curl -X POST "http://localhost:8000/analyze-log" 
     -F "log_file=@firmware_crash.log"

# Check server health
curl http://localhost:8000/health

CLI Tool

# Basic analysis
python -m src.cli analyze firmware_crash.log

# JSON output
python -m src.cli analyze firmware_crash.log --format json

# With ELF binary for symbol resolution
python -m src.cli analyze firmware_crash.log --elf firmware.elf

🔧 API Documentation

Endpoints

POST /analyze-log

Analyze firmware log files with optional ELF binaries.

Parameters:

  • log_file: Log file (.log, .txt, .json)
  • elf_file: Optional ELF binary for symbol resolution

Response:

{
  "analysis_id": "abc123",
  "timestamp": "2024-01-01T12:00:00Z",
  "analysis_result": {
    "summary": "Hard fault due to I2C sensor failure",
    "suggested_fix": "Check sensor at I2C address 0x48",
    "confidence_score": 0.95,
    "likely_module": "sensor_driver.c",
    "criticality_level": "high",
    "technical_details": "Detailed technical analysis...",
    "related_events": ["hard_fault", "sensor_failure"]
  },
  "parsed_log": {
    "total_lines": 26,
    "events": [...],
    "metadata": {...}
  },
  "symbol_resolutions": [...],
  "processing_time_ms": 1250
}

GET /health

Check server health and configuration status.

Response:

{
  "status": "healthy",
  "version": "1.0.0",
  "openai_configured": true,
  "timestamp": "2024-01-01T12:00:00Z"
}

🔍 Supported Log Formats & Issue Types

Log Format Examples

# Traditional firmware logs
[00:00:01.123] INFO: System startup complete
[00:00:02.234] ERROR: I2C error reading sensor at address 0x48
[00:00:02.235] PANIC: Hard fault detected

# Stack overflow with detailed trace
[00:00:08.567] PANIC: Stack overflow detected!
[00:00:08.789] FATAL: Hard fault at PC=0x080034A2
[00:00:08.897] STACK_TRACE:   #0  0x080034A2 in recursive_data_process()

# Memory corruption events
[00:00:02.500] ERROR: Double free detected!
[00:00:04.000] ERROR: Wild pointer access at 0x12345678
[00:00:05.103] ERROR: Heap corruption at 0x20008300

# Boot sequence failures
[00:00:00.303] ERROR: I2C1 bus stuck! SDA line low
[00:00:00.452] ERROR: SPI Flash timeout! No response

Detected Issue Types

  • Stack Overflow - Recursive function calls, excessive local variables
  • Memory Corruption - Buffer overflows, double free, wild pointers, heap corruption
  • Boot Failures - Peripheral initialization, clock failures, I2C bus issues
  • Hardware Faults - Bus faults, external device timeouts, electrical issues
  • Sensor Issues - Communication failures, calibration problems, timeout errors
  • Watchdog Resets - Task blocking, infinite loops, system unresponsiveness

🧠 AI Analysis Examples

Stack Overflow Analysis (95% Confidence)

GPT-4 Analysis:

  • Root Cause: Uncontrolled recursive calls in recursive_data_process()
  • Stack Usage: 7680/8192 bytes (93.7% utilization)
  • Fault Location: data_processing.c:156
  • Fix: Add recursion depth limiting and iterative algorithm
  • Prevention: Stack monitoring, static analysis, unit testing

Memory Corruption Analysis (92% Confidence)

GPT-4 Analysis:

  • Issues: Buffer overflow + double free + wild pointer access
  • Heap State: 6144 bytes allocated, 3072 bytes leaked
  • Corruption: Header magic corrupted (0xDEADBEEF → 0x12345678)
  • Fix: Bounds checking, safe memory wrappers, pointer validation
  • Prevention: AddressSanitizer, heap debugging, static analysis

Boot Failure Analysis (89% Confidence)

GPT-4 Analysis:

  • Primary: I2C bus stuck (SDA line low)
  • Secondary: HSE crystal failure, external flash timeout
  • Impact: System in degraded mode with limited functionality
  • Fix: I2C bus recovery, hardware inspection, fallback mechanisms
  • Prevention: Bus monitoring, graceful degradation, robust initialization

🛠️ Configuration

Environment Variables

# OpenAI Configuration
OPENAI_API_KEY=your_api_key_here
OPENAI_MODEL=gpt-4                    # Default: gpt-4
OPENAI_MAX_TOKENS=2000               # Default: 2000
OPENAI_TEMPERATURE=0.3               # Default: 0.3

# Server Configuration  
HOST=0.0.0.0                         # Default: 0.0.0.0
PORT=8000                            # Default: 8000
DEBUG=false                          # Default: false

# Analysis Configuration
MAX_LOG_LINES=10000                  # Default: 10000
CONFIDENCE_THRESHOLD=0.5             # Default: 0.5

File Limits

  • Max file size: 50MB
  • Supported extensions: .log, .txt, .json, .elf, .bin
  • Max log lines: 10,000 (configurable)

📁 Project Structure

mcp_firmware_agent/
├── src/
│   ├── api/                 # FastAPI web server
│   │   ├── main.py         # Main API application
│   │   └── routes.py       # API route definitions
│   ├── analyzers/          # Analysis engines
│   │   ├── gpt_analyzer.py # GPT-4 integration
│   │   └── report_generator.py # Report generation
│   ├── parsers/            # Log parsing modules
│   │   ├── log_parser.py   # Main log parser
│   │   └── elf_parser.py   # ELF binary parser
│   ├── utils/              # Utility modules
│   │   ├── file_handler.py # File operations
│   │   └── analysis_service.py # Analysis orchestration
│   ├── models.py           # Pydantic data models
│   ├── config.py           # Configuration management
│   └── cli.py              # Command-line interface
├── test_logs/              # Comprehensive test scenarios
│   ├── sample_crash.log    # Hard fault example
│   ├── sample_watchdog.log # Watchdog reset example
│   ├── sample_json.log     # JSON format example
│   ├── sample_stack_overflow.log    # Recursive function overflow ✨
│   ├── sample_boot_failure.log      # I2C initialization failure ✨
│   └── sample_memory_corruption.log # Heap corruption analysis ✨
├── sample_reports/         # Professional AI analysis reports ✨
│   ├── stack_overflow_analysis.html      # Interactive HTML report
│   ├── memory_corruption_analysis.md     # Technical documentation
│   ├── boot_failure_analysis.json        # Structured API response
│   └── README.md                         # Report showcase guide
├── templates/              # HTML report templates
├── reports/                # Generated analysis reports
├── requirements.txt        # Python dependencies
├── .env                    # Environment configuration
└── README.md              # This documentation

🧪 Testing

Run Tests

# All tests
pytest tests/

# Unit tests only
pytest tests/unit/

# Integration tests
pytest tests/integration/

# With coverage
pytest --cov=src tests/

Comprehensive Sample Analysis

# Test all issue types
python -m src.cli analyze test_logs/sample_crash.log
python -m src.cli analyze test_logs/sample_watchdog.log  
python -m src.cli analyze test_logs/sample_json.log
python -m src.cli analyze test_logs/sample_stack_overflow.log     # Stack analysis
python -m src.cli analyze test_logs/sample_memory_corruption.log  # Memory debugging
python -m src.cli analyze test_logs/sample_boot_failure.log       # Hardware issues

# Generate reports in different formats
python -m src.cli analyze test_logs/sample_stack_overflow.log --format html
python -m src.cli analyze test_logs/sample_memory_corruption.log --format markdown
python -m src.cli analyze test_logs/sample_boot_failure.log --format json

🔧 Development

Setup Development Environment

# Install development dependencies
pip install -r requirements.txt pytest pytest-asyncio pytest-cov

# Run with auto-reload
python -m uvicorn src.api.main:app --reload --host 0.0.0.0 --port 8000

Architecture Overview

  1. Log Parsing: Multi-format log parsing with event detection
  2. AI Analysis: GPT-4 integration for intelligent insights
  3. Symbol Resolution: ELF binary analysis for memory addresses
  4. Report Generation: Multi-format output with rich styling
  5. Web Interface: Modern React-like UI for file uploads
  6. API Layer: RESTful endpoints for programmatic access

🚀 Deployment

Docker Deployment

FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["python", "-m", "uvicorn", "src.api.main:app", "--host", "0.0.0.0", "--port", "8000"]

Production Considerations

  • Set DEBUG=false in production
  • Use environment variables for sensitive configuration
  • Configure proper logging levels
  • Set up reverse proxy (nginx/traefik)
  • Enable HTTPS/TLS termination

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Development Guidelines

  • Follow PEP 8 style guide
  • Add tests for new features
  • Update documentation
  • Ensure type hints are present
  • Add docstrings for public functions

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • OpenAI GPT-4: Powering intelligent firmware analysis
  • FastAPI: Modern, fast web framework
  • Pydantic: Data validation and settings management
  • Uvicorn: Lightning-fast ASGI server
  • Jinja2: Template engine for report generation

📞 Support

  • Documentation: GitHub Wiki
  • Issues: GitHub Issues
  • Discussions: GitHub Discussions

Built with ❤️ for embedded systems developers

Featured Templates

View More
AI Assistants
Talk with Claude 3
156 1166
AI Engineering
Python Bug Fixer
119 1081
Verified Icon
AI Agents
AI Chatbot Starter Kit
1309 6081 5.0

Start your free trial

Build your solution today. No credit card required.

Sign In

Register

Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.