Swarms MCP Documentation Server
Description
This program is an Agent Framework Documentation MCP Server built on FastMCP, designed to enable AI agents to efficiently retrieve information from your documentation database. It combines hybrid semantic (vector) and keyword (BM25) search, chunked indexing, and a robust FastMCP tools API for seamless agent integration.
Key Capabilities:
- Efficient, chunk-level retrieval using both semantic and keyword search
- Agents can query, list, and retrieve documentation using FastMCP tools
- Local-first, low-latency design (all data indexed and queried locally)
- Automatic reindexing on file changes
- Modular: add any repos to
corpora/
, support for all major filetypes - Extensible: add new tools, retrievers, or corpora as needed
Main modules:
embed_documents.py
→ Loads, chunks, and embeds documentsswarms_server.py
→ Brings up the MCP server and FastMCP tools
Key Features
- Hybrid Retriever
: Combines semantic and keyword search.
- Dynamic Markdown Handling
: Smart loader based on file size.
- Specialized Loaders
:
.py
,.ipynb
,.md
,.txt
,.yaml
,.yml
. - Chunk and File Summaries
: Displays chunk counts along with file counts.
- Live Watchdog
: Instantly responds to any changes in
corpora/
. - User Confirmation for Costs
: Confirms before expensive embeddings.
- Healthcheck Endpoint
: Ensure server is ready for use.
- Local-First
: All repos indexed locally without external dependencies.
- Safe Deletion Helper
: Auto-delete broken/mismatched indexes.
Version History
Version | Date | Highlights |
---|---|---|
2.2 | 2025‑04‑25 | Split embed/load from server; full chunk counting in loading summaries |
1.0 | 2025‑04‑25 | Dynamic Markdown loader, color logs, Healthcheck tool |
0.7 | 2025‑04‑25 | Specialized file loaders for .py , .ipynb , .md |
0.5 | 2025‑04‑10 | OpenAI large model embeddings, extended MCP tools |
0.1 | 2025‑04‑10 | Initial version with generic loaders |
Managing Your Corpora (Local Repos)
Because Swarms and other frameworks are very large, full corpora are not pushed to GitHub.
Instead, you clone them manually under corpora/
:
# Inside your project folder:
cd corpora/
# Clone useful frameworks:
git clone https://github.com/SwarmsAI/Swarms
git clone https://github.com/SwarmsAI/Swarms-Examples
git clone https://github.com/microsoft/autogen
git clone https://github.com/langchain-ai/langgraph
git clone https://github.com/openai/openai-agent-sdk
Notes:
- Add any repo — public, private, custom.
- Build your own custom AI knowledge base locally.
- Large repos (>500MB) are fine; all indexing is local.
Quick Start
# 1. Activate virtual environment
venvScriptsActivate.ps1
# 2. Install all dependencies
pip install -r requirements.txt
# 3. Configure OpenAI API Key
echo OPENAI_API_KEY=sk-... > .env
# 4. (Load and embed documents
python embed_documents.py
# 5. Start MCP server
python swarms_server.py
# If no index is found, the server will prompt you to embed documents automatically.
Configuration
- Corpus: Drop repos inside
corpora/
- Environment Variables:
.env
must containOPENAI_API_KEY
- Index File Support:
- Both
chroma-collections.parquet
andchroma.sqlite3
are supported..parquet
is preferred if both exist.
- Both
- Auto-Embedding:
- If no index is found, the server will prompt you to embed and index your documents automatically.
- Optional:
- Disable Chroma compaction if you prefer:
setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
- Disable Chroma compaction if you prefer:
- Command-Line Flags:
--reindex
→ trigger a refresh reindex during server run.
File Watching & Auto Reindexing
The MCP Server watches corpora/
for any file changes:
- Any modification, creation, or deletion triggers a live reindex.
- No need to restart the server.
Available FastMCP Tools
Tool | Description |
---|---|
swarm_docs.search | Search relevant documentation chunks |
swarm_docs.list_files | List all indexed files |
swarm_docs.get_chunk | Get a specific chunk by path and index |
swarm_docs.reindex | Force reindex (full or incremental) |
swarm_docs.healthcheck | Check MCP Server status |
Troubleshooting
- Q: I get ‘No valid existing index found’ when starting the server.
- A: The server will now prompt you to embed and index documents. Accept the prompt to proceed, or run
python embed_documents.py
manually first.
- A: The server will now prompt you to embed and index documents. Accept the prompt to proceed, or run
- Q: Which index file is used?
- A: The server will use
chroma-collections.parquet
if available, otherwisechroma.sqlite3
.
- A: The server will use
- Q: I want to force a reindex.
- A: Run
python swarms_server.py --reindex
or use theswarm_docs.reindex
tool.
- A: Run
Example Usage
# Search the documentation
result = swarm_docs.search("How do I load a notebook?")
print(result)
# List all available files
files = swarm_docs.list_files()
print(files)
# Get a specific document chunk
chunk = swarm_docs.get_chunk(path="examples/agent.py", chunk_idx=2)
print(chunk["content"])
Extending & Rebuilding
Add new docs → drop into
corpora/
, then:python swarms_server.py --reindex
Schema changes → (e.g. different metadata structure):
python swarms_server.py --reindex --full
Add new repo → Drop folder under
corpora/
, reindex.Recommended for mostly read-only repos:
setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
IDE Integration
Plug directly into Windsurf Cascade:
"swarms": {
"command": "C:/…/Swarms/venv/Scripts/python.exe",
"args": ["swarms_server.py"]
}
Then you can access swarm_docs.*
tools from Cascade automations.
Requirements
Python 3.11 Environment Required
Create your environment explicitly:
python3.11 -m venv venv
Then install with:
pip install -r requirements.txt
MCP Server Ready
After boot:
- Proper loading summaries
- Safe confirmation before expensive actions
- Auto file watching and reindexing
- Windsurf plug-in ready
- Full tool coverage
You’re good to cascade it!
Flow Diagram
+------------------+
|
MCP Server |
+------------------+
|
+---------------------------------------------------+
| |
+-------------+ +-----------------+
|
Corpora | |
FastMCP Tools |
| Folder | | (search, list, |
| (markdown, | | get_chunk, etc.) |
| code, etc) | +-----------------+
+-------------+ |
| |
+-----------------+ +----------------+
|
Loaders | |
Ensemble |
| (Python, MD, TXT)| | Retriever (BM25|
| Split into Chunks| | + Chroma) |
+-----------------+ +----------------+
| |
+-----------------+ +----------------+
|
Text Splitter | |
Similarity |
| (RecursiveCharacter) | | Search (chunks) |
+-----------------+ +----------------+
| |
+-----------------+ +----------------+
|
Embed chunks | —OpenAI Embedding (small)—> |
Chroma Vector |
| via OpenAI API | | DB (Local Store) |
+-----------------+ +----------------+
| |
+-----------------+ +----------------+
|
Reindex Watcher| |
File Watchdog |
| (Auto detect | | (Auto reindex |
| new/modified files| | on file events) |
+-----------------+ +----------------+
Swarms Documentation Server
Project Details
- Ransom-Alpha/Swarms_MCPserver
- Last Updated: 5/1/2025
Recomended MCP Servers
A FastMCP server that dynamically creates MCP (Model Context Protocol) servers from web API configurations. This allows you...
A MCP server for Home Assistant
MCP server for single cell analysis
This read-only MCP Server allows you to connect to Oracle Financials Cloud data from Claude Desktop through CData...
A Cursor MCP tool that enables Claude's thinking mode"
A MCP server that can create queries and fetch information from APi documentation.
A Model Context Protocol server implementation for Dart task management system
MCP server for Google Gemini 2.0 Flash image generation