MCP Server for Vertex AI Search
This is a MCP server to search documents using Vertex AI.
Architecture
This solution uses Gemini with Vertex AI grounding to search documents using your private data. Grounding improves the quality of search results by grounding Geminiโs responses in your data stored in Vertex AI Datastore. We can integrate one or multiple Vertex AI data stores to the MCP server. For more details on grounding, refer to Vertex AI Grounding Documentation.
How to use
There are two ways to use this MCP server. If you want to run this on Docker, the first approach would be good as Dockerfile is provided in the project.
1. Clone the repository
# Clone the repository
git clone git@github.com:ubie-oss/mcp-vertexai-search.git
# Create a virtual environment
uv venv
# Install the dependencies
uv sync --all-extras
# Check the command
uv run mcp-vertexai-search
Install the python package
The package isnโt published to PyPI yet, but we can install it from the repository. We need a config file derives from config.yml.template to run the MCP server, because the python package doesnโt include the config template. Please refer to Appendix A: Config file for the details of the config file.
# Install the package
pip install git+https://github.com/ubie-oss/mcp-vertexai-search.git
# Check the command
mcp-vertexai-search --help
Development
Prerequisites
- uv
- Vertex AI data store
- Please look into the official documentation about data stores for more information
Set up Local Environment
# Optional: Install uv
python -m pip install -r requirements.setup.txt
# Create a virtual environment
uv venv
uv sync --all-extras
Run the MCP server
This supports two transports for SSE (Server-Sent Events) and stdio (Standard Input Output).
We can control the transport by setting the --transport
flag.
We can configure the MCP server with a YAML file. config.yml.template is a template for the config file. Please modify the config file to fit your needs.
uv run mcp-vertexai-search serve
--config config.yml
--transport <stdio|sse>
Test the Vertex AI Search
We can test the Vertex AI Search by using the mcp-vertexai-search search
command without the MCP server.
uv run mcp-vertexai-search search
--config config.yml
--query <your-query>
Appendix A: Config file
config.yml.template is a template for the config file.
server
server.name
: The name of the MCP server
model
model.model_name
: The name of the Vertex AI modelmodel.project_id
: The project ID of the Vertex AI modelmodel.location
: The location of the model (e.g. us-central1)model.impersonate_service_account
: The service account to impersonatemodel.generate_content_config
: The configuration for the generate content API
data_stores
: The list of Vertex AI data storesdata_stores.project_id
: The project ID of the Vertex AI data storedata_stores.location
: The location of the Vertex AI data store (e.g. us)data_stores.datastore_id
: The ID of the Vertex AI data storedata_stores.tool_name
: The name of the tooldata_stores.description
: The description of the Vertex AI data store
Vertex AI Search
Project Details
- ubie-oss/mcp-vertexai-search
- Apache License 2.0
- Last Updated: 4/15/2025
Recomended MCP Servers
MCP Server + Plugin for Unity Editor and Unity game. The Plugin allows to connect to MCP clients...
MCP server(s) for Aipolabs ACI.dev
MCP Server for YouTube API, enabling video management, Shorts creation, and advanced analytics
This is a Model Context Protocol (MCP) server that provides professional cycling data from FirstCycling. It allows you...
MCP Server for Chronulus AI Forecasting and Prediction Agents
This project is a Model Context Protocol (MCP) server for interacting with the VRChat API.
MongoDB Lens: Full Featured MCP Server for MongoDB Databases