MCP-RAG: Model Context Protocol with RAG 
A powerful and efficient RAG (Retrieval-Augmented Generation) implementation using GroundX and OpenAI, built with Modern Context Processing (MCP).
Features
- Advanced RAG Implementation: Utilizes GroundX for high-accuracy document retrieval
- Model Context Protocol: Seamless integration with MCP for enhanced context handling
- Type-Safe: Built with Pydantic for robust type checking and validation
- Flexible Configuration: Easy-to-customize settings through environment variables
- Document Ingestion: Support for PDF document ingestion and processing
- Intelligent Search: Semantic search capabilities with scoring
Prerequisites
- Python 3.12 or higher
- OpenAI API key
- GroundX API key
- MCP CLI tools
Installation
- Clone the repository:
git clone <repository-url>
cd mcp-rag
- Create and activate a virtual environment:
uv sync
source .venv/bin/activate # On Windows, use `.venvScriptsactivate`
Configuration
- Copy the example environment file:
cp .env.example .env
- Configure your environment variables in
.env
:
GROUNDX_API_KEY="your-groundx-api-key"
OPENAI_API_KEY="your-openai-api-key"
BUCKET_ID="your-bucket-id"
Usage
Starting the Server
Run the inspect server using:
mcp dev server.py
Document Ingestion
To ingest new documents:
from server import ingest_documents
result = ingest_documents("path/to/your/document.pdf")
print(result)
Performing Searches
Basic search query:
from server import process_search_query
response = process_search_query("your search query here")
print(f"Query: {response.query}")
print(f"Score: {response.score}")
print(f"Result: {response.result}")
With custom configuration:
from server import process_search_query, SearchConfig
config = SearchConfig(
completion_model="gpt-4",
bucket_id="custom-bucket-id"
)
response = process_search_query("your query", config)
Dependencies
groundx
(≥2.3.0): Core RAG functionalityopenai
(≥1.75.0): OpenAI API integrationmcp[cli]
(≥1.6.0): Modern Context Processing toolsipykernel
(≥6.29.5): Jupyter notebook support
Security
- Never commit your
.env
file containing API keys - Use environment variables for all sensitive information
- Regularly rotate your API keys
- Monitor API usage for any unauthorized access
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
MCP-RAG
Project Details
- apatoliya/mcp-rag
- Last Updated: 5/1/2025
Recomended MCP Servers


Dappier MCP server connects any AI to proprietary, real-time data — including web search, news, sports, stock market...
Model Context Protocol for strateegia API
MCP server for accessing geologic data with the Macrostrat API
Two Truths and a Twist: The world's first Model Context Protocol game
MCP-Server for SAP ABAP wrapping abap-adt-api
A powerful Model Context Protocol (MCP) server for web search and URL content extraction using DuckDuckGo.
Model Context Protocol (MCP) with TikTok integration
playwright/mcpをsseで外部から触るためのやつ