LanceDB Node.js Vector Search
A Node.js implementation for vector search using LanceDB and Ollama’s embedding model.
Overview
This project demonstrates how to:
- Connect to a LanceDB database
- Create custom embedding functions using Ollama
- Perform vector similarity search against stored documents
- Process and display search results
Prerequisites
- Node.js (v14 or later)
- Ollama running locally with the
nomic-embed-text
model - LanceDB storage location with read/write permissions
Installation
- Clone the repository
- Install dependencies:
pnpm install
Dependencies
@lancedb/lancedb
: LanceDB client for Node.jsapache-arrow
: For handling columnar datanode-fetch
: For making API calls to Ollama
Usage
Run the vector search test script:
pnpm test-vector-search
Or directly execute:
node test-vector-search.js
Configuration
The script connects to:
- LanceDB at the configured path
- Ollama API at
http://localhost:11434/api/embeddings
MCP Configuration
To integrate with Claude Desktop as an MCP service, add the following to your MCP configuration JSON:
{
"mcpServers": {
"lanceDB": {
"command": "node",
"args": [
"/path/to/lancedb-node/dist/index.js",
"--db-path",
"/path/to/your/lancedb/storage"
]
}
}
}
Replace the paths with your actual installation paths:
/path/to/lancedb-node/dist/index.js
- Path to the compiled index.js file/path/to/your/lancedb/storage
- Path to your LanceDB storage directory
Custom Embedding Function
The project includes a custom OllamaEmbeddingFunction
that:
- Sends text to the Ollama API
- Receives embeddings with 768 dimensions
- Formats them for use with LanceDB
Vector Search Example
The example searches for “how to define success criteria” in the “ai-rag” table, displaying results with their similarity scores.
License
MIT License
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
LanceDB Node.js Vector Search
Project Details
- vurtnec/mcp-LanceDB-node
- Last Updated: 3/23/2025
Recomended MCP Servers
基于 MCP 协议的腾讯云 COS MCP Server,无需编码即可让大模型快速接入腾讯云存储 (COS) 和数据万象 (CI) 能力。
A full implementation of Ethers as an AI tool for the model context protocol
An MCP server for reading dlis files
Arc Memory MCP Server - Bridge between Arc Memory TKG and MCP clients
Model Context Protocol (MCP) server for TeamRetro integration.
Model Context Protocol server for OpenStreetMap data
MCP Server for Satstream API
Collection of Google-native tools (e.g., Gmail, Calendar) for the MCP
A Model Context Protocol server for document Q&A powered by Langflow . It demonstrates core MCP concepts by...
An MCP tool that provides AI with the ability to compress and decompress local files.