Unsloth MCP Server - UBOS

✨ From vibe coding to vibe deployment. UBOS MCP turns ideas into infra with one message.

Learn more

Unsloth MCP Server

An MCP server for Unsloth - a library that makes LLM fine-tuning 2x faster with 80% less memory.

What is Unsloth?

Unsloth is a library that dramatically improves the efficiency of fine-tuning large language models:

  • Speed: 2x faster fine-tuning compared to standard methods
  • Memory: 80% less VRAM usage, allowing fine-tuning of larger models on consumer GPUs
  • Context Length: Up to 13x longer context lengths (e.g., 89K tokens for Llama 3.3 on 80GB GPUs)
  • Accuracy: No loss in model quality or performance

Unsloth achieves these improvements through custom CUDA kernels written in OpenAI’s Triton language, optimized backpropagation, and dynamic 4-bit quantization.

Features

  • Optimize fine-tuning for Llama, Mistral, Phi, Gemma, and other models
  • 4-bit quantization for efficient training
  • Extended context length support
  • Simple API for model loading, fine-tuning, and inference
  • Export to various formats (GGUF, Hugging Face, etc.)

Quick Start

  1. Install Unsloth: pip install unsloth
  2. Install and build the server:
    cd unsloth-server
    npm install
    npm run build
    
  3. Add to MCP settings:
    {
      "mcpServers": {
        "unsloth-server": {
          "command": "node",
          "args": ["/path/to/unsloth-server/build/index.js"],
          "env": {
            "HUGGINGFACE_TOKEN": "your_token_here" // Optional
          },
          "disabled": false,
          "autoApprove": []
        }
      }
    }
    

Available Tools

check_installation

Verify if Unsloth is properly installed on your system.

Parameters: None

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "check_installation",
  arguments: {}
});

list_supported_models

Get a list of all models supported by Unsloth, including Llama, Mistral, Phi, and Gemma variants.

Parameters: None

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "list_supported_models",
  arguments: {}
});

load_model

Load a pretrained model with Unsloth optimizations for faster inference and fine-tuning.

Parameters:

  • model_name (required): Name of the model to load (e.g., “unsloth/Llama-3.2-1B”)
  • max_seq_length (optional): Maximum sequence length for the model (default: 2048)
  • load_in_4bit (optional): Whether to load the model in 4-bit quantization (default: true)
  • use_gradient_checkpointing (optional): Whether to use gradient checkpointing to save memory (default: true)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "load_model",
  arguments: {
    model_name: "unsloth/Llama-3.2-1B",
    max_seq_length: 4096,
    load_in_4bit: true
  }
});

finetune_model

Fine-tune a model with Unsloth optimizations using LoRA/QLoRA techniques.

Parameters:

  • model_name (required): Name of the model to fine-tune
  • dataset_name (required): Name of the dataset to use for fine-tuning
  • output_dir (required): Directory to save the fine-tuned model
  • max_seq_length (optional): Maximum sequence length for training (default: 2048)
  • lora_rank (optional): Rank for LoRA fine-tuning (default: 16)
  • lora_alpha (optional): Alpha for LoRA fine-tuning (default: 16)
  • batch_size (optional): Batch size for training (default: 2)
  • gradient_accumulation_steps (optional): Number of gradient accumulation steps (default: 4)
  • learning_rate (optional): Learning rate for training (default: 2e-4)
  • max_steps (optional): Maximum number of training steps (default: 100)
  • dataset_text_field (optional): Field in the dataset containing the text (default: ‘text’)
  • load_in_4bit (optional): Whether to use 4-bit quantization (default: true)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "finetune_model",
  arguments: {
    model_name: "unsloth/Llama-3.2-1B",
    dataset_name: "tatsu-lab/alpaca",
    output_dir: "./fine-tuned-model",
    max_steps: 100,
    batch_size: 2,
    learning_rate: 2e-4
  }
});

generate_text

Generate text using a fine-tuned Unsloth model.

Parameters:

  • model_path (required): Path to the fine-tuned model
  • prompt (required): Prompt for text generation
  • max_new_tokens (optional): Maximum number of tokens to generate (default: 256)
  • temperature (optional): Temperature for text generation (default: 0.7)
  • top_p (optional): Top-p for text generation (default: 0.9)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "generate_text",
  arguments: {
    model_path: "./fine-tuned-model",
    prompt: "Write a short story about a robot learning to paint:",
    max_new_tokens: 512,
    temperature: 0.8
  }
});

export_model

Export a fine-tuned Unsloth model to various formats for deployment.

Parameters:

  • model_path (required): Path to the fine-tuned model
  • export_format (required): Format to export to (gguf, ollama, vllm, huggingface)
  • output_path (required): Path to save the exported model
  • quantization_bits (optional): Bits for quantization (for GGUF export) (default: 4)

Example:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "export_model",
  arguments: {
    model_path: "./fine-tuned-model",
    export_format: "gguf",
    output_path: "./exported-model.gguf",
    quantization_bits: 4
  }
});

Advanced Usage

Custom Datasets

You can use custom datasets by formatting them properly and hosting them on Hugging Face or providing a local path:

const result = await use_mcp_tool({
  server_name: "unsloth-server",
  tool_name: "finetune_model",
  arguments: {
    model_name: "unsloth/Llama-3.2-1B",
    dataset_name: "json",
    data_files: {"train": "path/to/your/data.json"},
    output_dir: "./fine-tuned-model"
  }
});

Memory Optimization

For large models on limited hardware:

  • Reduce batch size and increase gradient accumulation steps
  • Use 4-bit quantization
  • Enable gradient checkpointing
  • Reduce sequence length if possible

Troubleshooting

Common Issues

  1. CUDA Out of Memory: Reduce batch size, use 4-bit quantization, or try a smaller model
  2. Import Errors: Ensure you have the correct versions of torch, transformers, and unsloth installed
  3. Model Not Found: Check that you’re using a supported model name or have access to private models

Version Compatibility

  • Python: 3.10, 3.11, or 3.12 (not 3.13)
  • CUDA: 11.8 or 12.1+ recommended
  • PyTorch: 2.0+ recommended

Performance Benchmarks

ModelVRAMUnsloth SpeedVRAM ReductionContext Length
Llama 3.3 (70B)80GB2x faster>75%13x longer
Llama 3.1 (8B)80GB2x faster>70%12x longer
Mistral v0.3 (7B)80GB2.2x faster75% less-

Requirements

  • Python 3.10-3.12
  • NVIDIA GPU with CUDA support (recommended)
  • Node.js and npm

License

Apache-2.0

Featured Templates

View More
AI Characters
Sarcastic AI Chat Bot
126 1226
Verified Icon
AI Assistants
Speech to Text
128 1242
Data Analysis
Pharmacy Admin Panel
232 1456

Start your free trial

Build your solution today. No credit card required.

Sign In

Register

Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.