RagDocs MCP Server
A Model Context Protocol (MCP) server that provides RAG (Retrieval-Augmented Generation) capabilities using Qdrant vector database and Ollama/OpenAI embeddings. This server enables semantic search and management of documentation through vector similarity.
Features
- Add documentation with metadata
- Semantic search through documents
- List and organize documentation
- Delete documents
- Support for both Ollama (free) and OpenAI (paid) embeddings
- Automatic text chunking and embedding generation
- Vector storage with Qdrant
Prerequisites
- Node.js 16 or higher
- One of the following Qdrant setups:
- Local instance using Docker (free)
- Qdrant Cloud account with API key (managed service)
- One of the following for embeddings:
- Ollama running locally (default, free)
- OpenAI API key (optional, paid)
Available Tools
1. add_document
Add a document to the RAG system.
Parameters:
url
(required): Document URL/identifiercontent
(required): Document contentmetadata
(optional): Document metadatatitle
: Document titlecontentType
: Content type (e.g., “text/markdown”)
2. search_documents
Search through stored documents using semantic similarity.
Parameters:
query
(required): Natural language search queryoptions
(optional):limit
: Maximum number of results (1-20, default: 5)scoreThreshold
: Minimum similarity score (0-1, default: 0.7)filters
:domain
: Filter by domainhasCode
: Filter for documents containing codeafter
: Filter for documents after date (ISO format)before
: Filter for documents before date (ISO format)
3. list_documents
List all stored documents with pagination and grouping options.
Parameters (all optional):
page
: Page number (default: 1)pageSize
: Number of documents per page (1-100, default: 20)groupByDomain
: Group documents by domain (default: false)sortBy
: Sort field (“timestamp”, “title”, or “domain”)sortOrder
: Sort order (“asc” or “desc”)
4. delete_document
Delete a document from the RAG system.
Parameters:
url
(required): URL of the document to delete
Installation
npm install -g @mcpservers/ragdocs
MCP Server Configuration
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using Qdrant Cloud:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "https://your-cluster-url.qdrant.tech",
"QDRANT_API_KEY": "your-qdrant-api-key",
"EMBEDDING_PROVIDER": "ollama"
}
}
}
}
Using OpenAI:
{
"mcpServers": {
"ragdocs": {
"command": "node",
"args": ["@mcpservers/ragdocs"],
"env": {
"QDRANT_URL": "http://127.0.0.1:6333",
"EMBEDDING_PROVIDER": "openai",
"OPENAI_API_KEY": "your-api-key"
}
}
}
}
Local Qdrant with Docker
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
Environment Variables
QDRANT_URL
: URL of your Qdrant instance- For local: “http://127.0.0.1:6333” (default)
- For cloud: “https://your-cluster-url.qdrant.tech”
QDRANT_API_KEY
: API key for Qdrant Cloud (required when using cloud instance)EMBEDDING_PROVIDER
: Choice of embedding provider (“ollama” or “openai”, default: “ollama”)OPENAI_API_KEY
: OpenAI API key (required if using OpenAI)EMBEDDING_MODEL
: Model to use for embeddings- For Ollama: defaults to “nomic-embed-text”
- For OpenAI: defaults to “text-embedding-3-small”
License
Apache License 2.0
RagDocs MCP Server
Project Details
- heltonteixeira/ragdocs
- @mcpservers/ragdocs
- Apache License 2.0
- Last Updated: 4/14/2025
Recomended MCP Servers
mem0 MCP Server: A modern memory system using mem0 for AI applications with model context protocl (MCP)...
A minimal MCP Server based on the Anthropic's "think" tool research
Implementation of an MCP (Model Context Protocol) Server for SQLite. It provides an AI model with context and...
Databricks MCP Server
linear MCP server based on mcp-go
A collection of tools for your LLMs that run on Modal
This is a MCP server I built to interact with my hybrid graph rag db.
MCP server for enabling LLM applications to perform deep research via the MCP protocol
Solana Model Context Protocol (MCP) Demo
This is an MCP server that interacts with a PocketBase instance. It allows you to fetch, list, create,...