Python MCP Server for Code Graph Extraction
This MCP (Model Context Protocol) server provides tools for extracting and analyzing Python code structures, focusing on import/export relationships between files. This is a lightweight implementation that doesn’t require an agent system, making it easy to integrate into any Python application.
Features
- Code Relationship Discovery: Analyze import relationships between Python files
- Smart Code Extraction: Extract only the most relevant code sections to stay within token limits
- Directory Context: Include files from the same directory to provide better context
- Documentation Inclusion: Always include README.md files (or variants) to provide project documentation
- LLM-Friendly Formatting: Format code with proper metadata for language models
- MCP Protocol Support: Fully compatible with the Model Context Protocol JSON-RPC standard
The get_python_code
Tool
The server exposes a powerful code extraction tool that:
- Analyzes a target Python file and discovers all imported modules, classes, and functions
- Returns the complete code of the target file
- Includes code for all referenced objects from other files
- Adds additional contextual files from the same directory
- Respects token limits to avoid overwhelming language models
Installation
# Clone the repository
git clone https://github.com/yourusername/python-mcp-new.git
cd python-mcp-new
# Create a virtual environment
python -m venv venv
source venv/bin/activate # On Windows, use: venvScriptsactivate
# Install dependencies
pip install -r requirements.txt
Environment Variables
Create a .env
file based on the provided .env.example
:
# Token limit for extraction
TOKEN_LIMIT=8000
Usage
Configuring for MCP Clients
To configure this MCP server for use in MCP-compatible clients (like Codeium Windsurf), add the following configuration to your client’s MCP config file:
{
"mcpServers": {
"python-code-explorer": {
"command": "python",
"args": [
"/path/to/python-mcp-new/server.py"
],
"env": {
"TOKEN_LIMIT": "8000"
}
}
}
}
Replace /path/to/python-mcp-new/server.py
with the absolute path to the server.py file on your system.
You can also customize the environment variables:
TOKEN_LIMIT
: Maximum token limit for code extraction (default: 8000)
Usage Examples
Direct Function Call
from agent import get_python_code
# Get Python code structure for a specific file
result = get_python_code(
target_file="/home/user/project/main.py",
root_repo_path="/home/user/project" # Optional, defaults to target file directory
)
# Process the result
target_file = result["target_file"]
print(f"Main file: {target_file['file_path']}")
print(f"Docstring: {target_file['docstring']}")
# Display related files
for ref_file in result["referenced_files"]:
print(f"Related file: {ref_file['file_path']}")
print(f"Object: {ref_file['object_name']}")
print(f"Type: {ref_file['object_type']}")
# See if we're close to the token limit
print(f"Token usage: {result['token_count']}/{result['token_limit']}")
Example Response (Direct Function Call)
{
"target_file": {
"file_path": "main.py",
"code": "import osnimport sysnfrom utils.helpers import format_outputnndef main():n args = sys.argv[1:]n if not args:n print('No arguments provided')n returnn n result = format_output(args[0])n print(result)nnif __name__ == '__main__':n main()",
"type": "target",
"docstring": ""
},
"referenced_files": [
{
"file_path": "utils/helpers.py",
"object_name": "format_output",
"object_type": "function",
"code": "def format_output(text):n """Format the input text for display."""n if not text:n return ''n return f'Output: {text.upper()}'n",
"docstring": "Format the input text for display.",
"truncated": false
}
],
"additional_files": [
{
"file_path": "config.py",
"code": "# Configuration settingsnnDEBUG = TruenVERSION = '1.0.0'nMAX_RETRIES = 3n",
"type": "related_by_directory",
"docstring": "Configuration settings for the application."
}
],
"total_files": 3,
"token_count": 450,
"token_limit": 8000
}
Using the MCP Protocol
Listing Available Tools
from agent import handle_mcp_request
import json
# List available tools
list_request = {
"jsonrpc": "2.0",
"id": 1,
"method": "tools/list"
}
response = handle_mcp_request(list_request)
print(json.dumps(response, indent=2))
Example Response (tools/list)
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"tools": [
{
"name": "get_python_code",
"description": "Return the code of a target Python file and related files based on import/export proximity.",
"inputSchema": {
"type": "object",
"properties": {
"target_file": {
"type": "string",
"description": "Path to the Python file to analyze."
},
"root_repo_path": {
"type": "string",
"description": "Root directory of the repository. If not provided, the directory of the target file will be used."
}
},
"required": ["target_file"]
}
}
]
}
}
Calling get_python_code Tool
from agent import handle_mcp_request
import json
# Call the get_python_code tool
tool_request = {
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "get_python_code",
"arguments": {
"target_file": "/home/user/project/main.py",
"root_repo_path": "/home/user/project" # Optional
}
}
}
response = handle_mcp_request(tool_request)
print(json.dumps(response, indent=2))
Example Response (tools/call)
{
"jsonrpc": "2.0",
"id": 2,
"result": {
"content": [
{
"type": "text",
"text": "Python code analysis for /home/user/project/main.py"
},
{
"type": "resource",
"resource": {
"uri": "resource://python-code/main.py",
"mimeType": "application/json",
"data": {
"target_file": {
"file_path": "main.py",
"code": "import osnimport sysnfrom utils.helpers import format_outputnndef main():n args = sys.argv[1:]n if not args:n print('No arguments provided')n returnn n result = format_output(args[0])n print(result)nnif __name__ == '__main__':n main()",
"type": "target",
"docstring": ""
},
"referenced_files": [
{
"file_path": "utils/helpers.py",
"object_name": "format_output",
"object_type": "function",
"code": "def format_output(text):n """Format the input text for display."""n if not text:n return ''n return f'Output: {text.upper()}'n",
"docstring": "Format the input text for display.",
"truncated": false
}
],
"additional_files": [
{
"file_path": "config.py",
"code": "# Configuration settingsnnDEBUG = TruenVERSION = '1.0.0'nMAX_RETRIES = 3n",
"type": "related_by_directory",
"docstring": "Configuration settings for the application."
}
],
"total_files": 3,
"token_count": 450,
"token_limit": 8000
}
}
}
],
"isError": false
}
}
Handling Errors
from agent import handle_mcp_request
# Call with invalid file path
faulty_request = {
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "get_python_code",
"arguments": {
"target_file": "/path/to/nonexistent.py"
}
}
}
response = handle_mcp_request(faulty_request)
print(json.dumps(response, indent=2))
Example Error Response
{
"jsonrpc": "2.0",
"id": 3,
"result": {
"content": [
{
"type": "text",
"text": "Error processing Python code: No such file or directory: '/path/to/nonexistent.py'"
}
],
"isError": true
}
}
Testing
Run the tests to verify functionality:
python -m unittest discover tests
Key Components
- agent.py: Contains the
get_python_code
function and custom MCP protocol handlers - code_grapher.py: Implements the
CodeGrapher
class for Python code analysis - server.py: Full MCP server implementation using the MCP Python SDK
- run_server.py: CLI tool for running the MCP server
- examples/: Example scripts showing how to use the MCP server and client
- tests/: Comprehensive test cases for all functionality
Response Format Details
The get_python_code
tool returns a structured JSON object with the following fields:
Field | Type | Description |
---|---|---|
target_file | Object | Information about the target Python file |
referenced_files | Array | List of objects imported by the target file |
additional_files | Array | Additional context files from the same directory |
total_files | Number | Total number of files included in the response |
token_count | Number | Approximate count of tokens in all included code |
token_limit | Number | Maximum token limit configured for extraction |
Target File Object
Field | Type | Description |
---|---|---|
file_path | String | Relative path to the file from the repository root |
code | String | Complete source code of the file |
type | String | Always “target” |
docstring | String | Module-level docstring if available |
Referenced File Object
Field | Type | Description |
---|---|---|
file_path | String | Relative path to the file |
object_name | String | Name of the imported object (class, function, etc.) |
object_type | String | Type of the object (“class”, “function”, etc.) |
code | String | Source code of the specific object |
docstring | String | Docstring of the object if available |
truncated | Boolean | Whether the code was truncated due to token limits |
Additional File Object
Field | Type | Description |
---|---|---|
file_path | String | Relative path to the file |
code | String | Complete source code of the file |
type | String | Type of relation (e.g., “related_by_directory”) |
docstring | String | Module-level docstring if available |
Using the MCP SDK Server
This project now includes a full-featured Model Context Protocol (MCP) server built with the official Python MCP SDK. The server exposes our code extraction functionality in a standardized way that can be used with any MCP client, including Claude Desktop.
Starting the Server
# Start the server with default settings
python run_server.py
# Specify a custom name
python run_server.py --name "My Code Explorer"
# Use a specific .env file
python run_server.py --env-file .env.production
Using the MCP Development Mode
With the MCP SDK installed, you can run the server in development mode using the MCP CLI:
# Install the MCP CLI
pip install "mcp[cli]"
# Start the server in development mode with the Inspector UI
mcp dev server.py
This will start the MCP Inspector, a web interface for testing and debugging your server.
Claude Desktop Integration
You can install the server into Claude Desktop to access your code exploration tools directly from Claude:
# Install the server in Claude Desktop
mcp install server.py
# With custom configuration
mcp install server.py --name "Python Code Explorer" -f .env
Custom Server Deployment
For custom deployments, you can use the MCP server directly:
from server import mcp
# Configure the server
mcp.name = "Custom Code Explorer"
# Run the server
mcp.run()
Using the MCP Client
You can use the MCP Python SDK to connect to the server programmatically. See the provided example in examples/mcp_client_example.py
:
from mcp.client import Client, Transport
# Connect to the server
client = Client(Transport.subprocess(["python", "server.py"]))
client.initialize()
# List available tools
for tool in client.tools:
print(f"Tool: {tool.name}")
# Use the get_code tool
result = client.tools.get_code(target_file="path/to/your/file.py")
print(f"Found {len(result['referenced_files'])} referenced files")
# Clean up
client.shutdown()
Run the example:
python examples/mcp_client_example.py [optional_target_file.py]
Adding Additional Tools
You can add additional tools to the MCP server by decorating functions with the @mcp.tool()
decorator in server.py
:
@mcp.tool()
def analyze_imports(target_file: str) -> Dict[str, Any]:
"""Analyze all imports in a Python file."""
# Implementation code here
return {
"file": target_file,
"imports": [], # List of imports found
"analysis": "" # Analysis of the imports
}
@mcp.tool()
def find_python_files(directory: str, pattern: str = "*.py") -> list[str]:
"""Find Python files matching a pattern in a directory."""
from pathlib import Path
return [str(p) for p in Path(directory).glob(pattern) if p.is_file()]
You can also add resource endpoints to provide data directly:
@mcp.resource("python_stats://{directory}")
def get_stats(directory: str) -> Dict[str, Any]:
"""Get statistics about Python files in a directory."""
from pathlib import Path
stats = {
"directory": directory,
"file_count": 0,
"total_lines": 0,
"average_lines": 0
}
files = list(Path(directory).glob("**/*.py"))
stats["file_count"] = len(files)
if files:
total_lines = 0
for file in files:
with open(file, "r") as f:
total_lines += len(f.readlines())
stats["total_lines"] = total_lines
stats["average_lines"] = total_lines / len(files)
return stats
Model Context Protocol Integration
This project fully embraces the Model Context Protocol (MCP) standard, providing two implementation options:
Native MCP Integration: The original implementation in
agent.py
provides a direct JSON-RPC interface compatible with MCP.MCP SDK Integration: The new implementation in
server.py
leverages the official MCP Python SDK for a more robust and feature-rich experience.
Benefits of MCP Integration
- Standardized Interface: Makes your tools available to any MCP-compatible client
- Enhanced Security: Built-in permissions model and resource controls
- Better LLM Integration: Seamless integration with Claude Desktop and other LLM platforms
- Improved Developer Experience: Comprehensive tooling like the MCP Inspector
MCP Protocol Version
This implementation supports MCP Protocol version 0.7.0.
For more information about MCP, refer to the official documentation.
Python MCP Server
Project Details
- hesiod-au/python-mcp
- MIT License
- Last Updated: 4/5/2025
Recomended MCP Servers
A Model Context Protocol (MCP) server for the Open eClass platform.
A Model Context Protocol (MCP) server implementation for comprehensive code analysis. This tool integrates with Claude Desktop to...
Model Context Protocol Server for Mobile Automation and Scraping (iOS, Android, Emulators, Simulators and Physical Devices)
An MCP server enabling CFBD API queries within Claude Desktop.
MCP Implementation for CoinMarketCap
Browser MCP is a Model Context Provider (MCP) server that allows AI applications to control your browser
MCP server that provides doc forge capabilities
MCP server for analyzing & generating docs for React code locally
This is a quickstart template to easily build and deploy a custom remote MCP server to the cloud...
Keitaro API MCP Server
Model Context Protocol server for Daipendency