PDF Reader MCP Server
A Model Context Protocol (MCP) server that provides tools for reading and extracting text from PDF files, supporting both local files and URLs.
Author
Philip Van de Walker
Email: philip.vandewalker@gmail.com
GitHub: https://github.com/trafflux
Features
- Read text content from local PDF files
- Read text content from PDF URLs
- Error handling for corrupt or invalid PDFs
- Volume mounting for accessing local PDFs
- Auto-detection of PDF encoding
- Standardized JSON output format
Installation
- Clone the repository:
git clone https://github.com/trafflux/pdf-reader-mcp.git
cd pdf-reader-mcp
- Build the Docker image:
docker build -t mcp/pdf-reader .
Usage
Running the Server
To run the server with access to local PDF files:
docker run -i --rm -v /path/to/pdfs:/pdfs mcp/pdf-reader
Replace /path/to/pdfs
with the actual path to your PDF files directory.
If not using local PDF files:
docker run -i --rm mcp/pdf-reader
MCP Configuration
Add to your MCP settings configuration:
{
"mcpServers": {
"pdf-reader": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-v",
"/path/to/pdfs:/pdfs",
"mcp/pdf-reader"
],
"disabled": false,
"autoApprove": []
}
}
}
Without local file PDF files:
{
"mcpServers": {
"pdf-reader": {
"command": "docker",
"args": ["run", "-i", "--rm", "mcp/pdf-reader"],
"disabled": false,
"autoApprove": []
}
}
}
Available Tools
read_local_pdf
- Purpose: Read text content from a local PDF file
- Input:
{ "path": "/pdfs/document.pdf" }
- Output:
{ "success": true, "data": { "text": "Extracted content..." } }
read_pdf_url
- Purpose: Read text content from a PDF URL
- Input:
{ "url": "https://example.com/document.pdf" }
- Output:
{ "success": true, "data": { "text": "Extracted content..." } }
Error Handling
The server handles various error cases with clear error messages:
- Invalid or corrupt PDF files
- Missing files
- Failed URL requests
- Permission issues
- Network connectivity problems
Error responses follow the format:
{
"success": false,
"error": "Detailed error message"
}
Dependencies
- Python 3.11+
- PyPDF2: PDF parsing and text extraction
- requests: HTTP client for fetching PDFs from URLs
- MCP SDK: Model Context Protocol implementation
Project Structure
.
├── Dockerfile # Container configuration
├── README.md # This documentation
├── requirements.txt # Python dependencies
└── src/
├── __init__.py # Package initialization
└── server.py # Main server implementation
License
Copyright 2025 Philip Van de Walker
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Contact
For questions, issues, or contributions, please contact Philip Van de Walker:
- Email: philip.vandewalker@gmail.com
- GitHub: https://github.com/trafflux
PDF Reader
Project Details
- trafflux/pdf-reader-mcp
- Last Updated: 4/21/2025
Categories
Recomended MCP Servers
Enable AI assistants to search, access, and analyze PubMed articles through a simple MCP interface.

An MCP (Model Context Protocol) server that enables AI platforms to interact with
YepCode's infrastructure. Turn...
Linkup is a third-party extension that gives Claude access to real-time web search and premium content sources. It...
A Model Control Protocol (MCP) server that allows cross-checking responses from multiple LLM providers simultaneously
A server implementation for Wikidata API using the Model Context Protocol (MCP).
Model Context Protocol server for Salesforce REST API integration
MCP server for retrieval augmented thinking and problem solving
An MCP server to search for flights.
Not just another MCP filesystem. Optimized file operations with smart context management and token-efficient partial reading/editing. Process massive...