Frequently Asked Questions (FAQ) - Ollama MCP Server
Q: What is the Ollama MCP Server? A: The Ollama MCP Server is a FastAPI-based server that acts as a Model Context Protocol (MCP) wrapper for the Ollama API. It allows you to seamlessly integrate local large language models from Ollama with any MCP-compatible client, such as Claude Desktop.
Q: What is MCP (Model Context Protocol)? A: MCP is an open protocol that standardizes how applications provide context to LLMs (Large Language Models). It acts as a bridge, enabling AI models to access and interact with external data sources and tools.
Q: What are the benefits of using the Ollama MCP Server? A: The benefits include seamless integration of local LLMs, enhanced data privacy, reduced latency, cost savings, robust error handling, flexible configuration, and support for streaming.
Q: What are the prerequisites for installing the Ollama MCP Server?
A: You need Python 3.9+ installed, Ollama installed and running on your local machine, and uv
or pip
for package management.
Q: How do I install the Ollama MCP Server?
A: 1. Clone the repository. 2. Create a virtual environment. 3. Install dependencies using pip install -r requirements.txt
or uv pip install -r requirements.txt
.
Q: How do I configure the Ollama MCP Server for Claude Desktop?
A: Add the server configuration to your Claude Desktop config file (e.g., ~/Library/Application Support/Claude/claude_desktop_config.json
on macOS), specifying the path to your Python executable, the arguments, and the current working directory.
Q: Can I configure the server using environment variables?
A: Yes, you can configure the server using environment variables or a .env
file. You can customize settings such as the Ollama host, request timeouts, and logging levels.
Q: How do I run the Ollama MCP Server?
A: Run the server using the command: python -m ollama_mcp_server.main
or using the mcp dev tool for development: mcp dev ollama_mcp_server/main.py
.
Q: What do I do if Claude Desktop shows connection errors?
A: 1. Restart Claude Desktop. 2. Check that Ollama is running. 3. Verify the Python path in your Claude Desktop config. 4. Check logs by setting OLLAMA_LOG_LEVEL=DEBUG
in your .env
file.
Q: What do I do if the server can’t connect to Ollama?
A: 1. Ensure Ollama is running: ollama serve
. 2. Check the Ollama URL in your configuration. 3. Try accessing Ollama directly: curl http://localhost:11434/api/tags
.
Q: How can I improve the performance of the Ollama MCP Server?
A: Enable caching by setting OLLAMA_ENABLE_CACHE=true
, adjust the cache TTL using OLLAMA_CACHE_TTL
, and increase the request timeout for large models by adjusting OLLAMA_REQUEST_TIMEOUT
.
Q: How does the Ollama MCP Server integrate with the UBOS platform? A: The UBOS platform allows you to orchestrate AI Agents powered by local Ollama LLMs, connect them with your enterprise data, build custom AI Agents, and create Multi-Agent Systems.
Q: Where can I find support if I encounter issues? A: Check the troubleshooting section in the documentation, look through existing GitHub issues, or create a new issue with detailed information about your problem.
Ollama MCP Server
Project Details
- cuba6112/ollama-mcp
- MIT License
- Last Updated: 6/13/2025
Recomended MCP Servers
Connecting your Obsidian Vaults that are stored in local to AI via the Model Context Protocol (MCP)
openai websearch tool as mcp server
This read-only MCP Server allows you to connect to Google Sheets data from Claude Desktop through CData JDBC...
Share code with LLMs via Model Context Protocol or clipboard. Rule-based customization enables easy switching between different tasks...
A MCP server to search for accurate academic articles.
Big Data Service Management Platform
MCP-BOS: 模块化、可扩展的Model Context Protocol服务器框架 使用基于约定的自动模块发现机制,为Claude Desktop打造的灵活MCP服务器框架。通过简洁的模块接口和声明式配置,轻松扩展AI应用功能,无需修改核心代码。支持FastMCP标准,包含完整工具、资源和提示模板注册能力。