MCP-Augmented LLM for Reaching Weather Information
Overview
This system enhances Large Language Models (LLMs) with weather data capabilities using the Model Context Protocol (MCP) framework.
Demo
Components
- MCP Client: Store LLms
- MCP Server: Intermediate agent connecting external tools / resources
Configuration
DeepSeek Platform
BASE_URL=https://api.deepseek.com
MODEL=deepseek-chat
OPENAI_API_KEY=<your_api_key_here>
OpenWeather Platform
OPENWEATHER_API_BASE=https://api.openweathermap.org/data/2.5/weather
USER_AGENT=weather-app/1.0
API_KEY=<your_openweather_api_key>
Installation & Execution
- Initialize project:
uv init weather_mcp
cd weather_mcp
where weather_mcp is the project file name.
- Install dependencies:
uv add mcp httpx
- Launch system:
cd ./utils
python client.py server.py
Note: Replace all
<your_api_key_here>
placeholders with actual API keys
Weather Information Enhancer
Project Details
- aaasoulmate/mcp-weather
- Last Updated: 4/30/2025
Recomended MCP Servers
Airtable Model Context Protocol Server, for allowing AI systems to interact with your Airtable bases
MCP server providing basic file system operations. Supports navigation, reading, writing, and analyzing files.
An MCP Server to utilize Codelogic's rich software dependency data in your AI programming assistant.
MCP implementation to interface with linode api
Provide LLMs hosted, clean markdown documentation of libraries and frameworks
MCP server for Bazel
github-enterprise-mcp