Chatbot SQL Query Backend – README | MCP Marketplace

✨ From vibe coding to vibe deployment. UBOS MCP turns ideas into infra with one message.

Learn more

MCP Chat Backend

This project is a serverless FastAPI backend for a chatbot that generates and executes SQL queries on a Postgres database using OpenAI’s GPT models, then returns structured, UI-friendly responses. It is designed to run on AWS Lambda via AWS SAM, but can also be run locally or in Docker.

Features

  • FastAPI REST API with a single /ask endpoint
  • Uses OpenAI GPT models to generate and summarize SQL queries
  • Connects to a Postgres (Supabase) database
  • Returns structured JSON responses for easy frontend rendering
  • CORS enabled for frontend integration
  • Deployable to AWS Lambda (SAM), or run locally/Docker
  • Verbose logging for debugging (CloudWatch)

Project Structure

├── main.py            # Main FastAPI app and Lambda handler
├── requirements.txt   # Python dependencies
├── template.yaml      # AWS SAM template for Lambda deployment
├── samconfig.toml     # AWS SAM deployment config
├── Dockerfile         # For local/Docker deployment
├── .gitignore         # Files to ignore in git
└── .env               # (Not committed) Environment variables

Setup

1. Clone the repository

git clone <your-repo-url>
cd mcp-chat-3

2. Install Python dependencies

python -m venv .venv
source .venv/bin/activate  # or .venvScriptsactivate on Windows
pip install -r requirements.txt

3. Set up environment variables

Create a .env file (not committed to git):

OPENAI_API_KEY=your-openai-key
SUPABASE_DB_NAME=your-db
SUPABASE_DB_USER=your-user
SUPABASE_DB_PASSWORD=your-password
SUPABASE_DB_HOST=your-host
SUPABASE_DB_PORT=your-port

Running Locally

With Uvicorn

uvicorn main:app --reload --port 8080

With Docker

docker build -t mcp-chat-backend .
docker run -p 8080:8080 --env-file .env mcp-chat-backend

Deploying to AWS Lambda (SAM)

  1. Install AWS SAM CLI
  2. Build and deploy:
sam build
sam deploy --guided
  • Configure environment variables in template.yaml or via the AWS Console.
  • The API will be available at the endpoint shown after deployment (e.g. https://xxxxxx.execute-api.region.amazonaws.com/Prod/ask).

API Usage

POST /ask

  • Body: { "question": "your question here" }
  • Response: Structured JSON for chatbot UI, e.g.
{
  "messages": [
    {
      "type": "text",
      "content": "Sample 588 has a resistance of 1.2 ohms.",
      "entity": {
        "entity_type": "sample",
        "id": "588"
      }
    },
    {
      "type": "list",
      "items": ["Item 1", "Item 2"]
    }
  ]
}
  • See main.py for the full schema and more details.

Environment Variables

  • OPENAI_API_KEY: Your OpenAI API key
  • SUPABASE_DB_NAME, SUPABASE_DB_USER, SUPABASE_DB_PASSWORD, SUPABASE_DB_HOST, SUPABASE_DB_PORT: Your Postgres database credentials

Development Notes

  • All logs are sent to stdout (and CloudWatch on Lambda)
  • CORS is enabled for all origins by default
  • The backend expects the frontend to handle the structured response format

License

MIT (or your license here)

Featured Templates

View More
AI Engineering
Python Bug Fixer
119 1080
AI Assistants
AI Chatbot Starter Kit v0.1
130 667
AI Assistants
Talk with Claude 3
156 1165

Start your free trial

Build your solution today. No credit card required.

Sign In

Register

Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.