Bayesian MCP
A Model Calling Protocol (MCP) server for Bayesian reasoning, inference, and belief updating. This tool enables LLMs to perform rigorous Bayesian analysis and probabilistic reasoning.
Features
Bayesian Inference: Update beliefs with new evidence using MCMC sampling
Model Comparison: Compare competing models using information criteria
Predictive Inference: Generate predictions with uncertainty quantification
Visualization: Create visualizations of posterior distributions
MCP Integration: Seamlessly integrate with any LLM that supports MCP
Installation
Development Installation
Clone the repository and install dependencies:
git clone https://github.com/wrenchchatrepo/bayesian-mcp.git
cd bayesian-mcp
pip install -e .
Requirements
- Python 3.9+
- PyMC 5.0+
- ArviZ
- NumPy
- Matplotlib
- FastAPI
- Uvicorn
Quick Start
Starting the Server
# Run with default settings
python bayesian_mcp.py
# Specify host and port
python bayesian_mcp.py --host 0.0.0.0 --port 8080
# Set log level
python bayesian_mcp.py --log-level debug
The server will start and listen for MCP requests on the specified host and port.
API Usage
The Bayesian MCP server exposes several functions through its API:
1. Create Model
Create a new Bayesian model with specified variables.
# MCP Request
{
"function_name": "create_model",
"parameters": {
"model_name": "my_model",
"variables": {
"theta": {
"distribution": "normal",
"params": {"mu": 0, "sigma": 1}
},
"likelihood": {
"distribution": "normal",
"params": {"mu": "theta", "sigma": 0.5},
"observed": [0.1, 0.2, 0.3, 0.4]
}
}
}
}
2. Update Beliefs
Update model beliefs with new evidence.
# MCP Request
{
"function_name": "update_beliefs",
"parameters": {
"model_name": "my_model",
"evidence": {
"data": [0.1, 0.2, 0.3, 0.4]
},
"sample_kwargs": {
"draws": 1000,
"tune": 1000,
"chains": 2
}
}
}
3. Make Predictions
Generate predictions using the posterior distribution.
# MCP Request
{
"function_name": "predict",
"parameters": {
"model_name": "my_model",
"variables": ["theta"],
"conditions": {
"x": [1.0, 2.0, 3.0]
}
}
}
4. Compare Models
Compare multiple models using information criteria.
# MCP Request
{
"function_name": "compare_models",
"parameters": {
"model_names": ["model_1", "model_2"],
"metric": "waic"
}
}
5. Create Visualization
Generate visualizations of model posterior distributions.
# MCP Request
{
"function_name": "create_visualization",
"parameters": {
"model_name": "my_model",
"plot_type": "trace",
"variables": ["theta"]
}
}
Examples
The examples/
directory contains several examples demonstrating how to use the Bayesian MCP server:
Linear Regression
A simple linear regression example to demonstrate parameter estimation:
python examples/linear_regression.py
A/B Testing
An example of Bayesian A/B testing for conversion rates:
python examples/ab_test.py
Supported Distributions
The Bayesian engine supports the following distributions:
normal
: Normal (Gaussian) distributionlognormal
: Log-normal distributionbeta
: Beta distributiongamma
: Gamma distributionexponential
: Exponential distributionuniform
: Uniform distributionbernoulli
: Bernoulli distributionbinomial
: Binomial distributionpoisson
: Poisson distributiondeterministic
: Deterministic transformation
MCP Integration
This server implements the Model Calling Protocol, making it compatible with a wide range of LLMs and frameworks. To use it with your LLM:
import requests
response = requests.post("http://localhost:8000/mcp", json={
"function_name": "create_model",
"parameters": {
"model_name": "example_model",
"variables": {...}
}
})
result = response.json()
License
MIT
Credits
Based on concepts and code from the Wrench AI framework.
Bayesian Reasoning Server
Project Details
- wrenchchatrepo/bayes-msp
- MIT License
- Last Updated: 5/7/2025
Recomended MCP Servers
mcp-server
A web-friendly way for anyone to build unusual displays
A Model Context Protocol (MCP) server that provides tools for fetching dependency information from Clojars, the Clojure community's...
Instant MCP Server for Claude Desktop to Make Images and Videos using FAL
InterSystems IRIS MCP server
Currents MCP Server
MCP to index techincal docs on local vector database to work with Cursor
Talk to a Cloudflare Worker from Claude Desktop!
A connector for Claude Desktop to read and search an Obsidian vault.