AutoSpectra MCP Server

All-In-One Automation Platform for AI Agents: Browser, API Testing, and More
[](https://smithery.ai/server/@samuelvinay91/autospectra-mcp-server)AutoSpectra is a comprehensive MCP (Model Context Protocol) server that provides complete automation and testing capabilities for any AI agent. From browser automation and API testing to debugging tools and mock services, AutoSpectra offers a full suite of tools that integrate seamlessly with any MCP-compatible system, including but not limited to Claude, ChatGPT, Gemini, and Perplexity.
Features
Browser Automation: Navigate, click, type, extract data, and take screenshots
API Testing Tools: Make HTTP/GraphQL requests, validate schemas, create mock APIs
Testing Framework: End-to-end testing, accessibility testing, and visual validation
Debugging Capabilities: Interactive debug sessions with step-by-step execution
AI Agent Compatibility: Works with any AI agent supporting the MCP protocol
Visible Browser Mode: Debug with visible browsers or run headless for efficiency
Self-Healing Selectors: Robust element selection that adapts to changes
Claude Computer Use: Integration with Anthropic's Claude computer capabilities
Installation
# Clone the repository
git clone https://github.com/your-username/autospectra-mcp-server.git
cd autospectra-mcp-server
# Install dependencies
npm install
# Build the project
npm run build
Environment Setup
Create a .env
file in the root directory with the following variables:
# Server configuration
PORT=3000
DEBUG=true
HTTP_SERVER=true
# API Keys
ANTHROPIC_API_KEY=your-anthropic-api-key
# Playwright configuration
HEADLESS=false
SLOW_MO=50
# Output directory
OUTPUT_DIR=./output
Usage
Starting the Server
# Start the server
npm start
# Or start in development mode
npm run dev
Using the MCP Tools
AutoSpectra provides a wide range of automation tools that can be used through the MCP protocol:
Browser Automation
// Navigate to a URL with visible browser
await use_mcp_tool({
server_name: "autospectra",
tool_name: "navigate",
arguments: {
url: "https://example.com",
visible: true
}
});
// Click on an element with selector
await use_mcp_tool({
server_name: "autospectra",
tool_name: "click",
arguments: {
selector: "#login-button"
}
});
API Testing
// Make an HTTP request
await use_mcp_tool({
server_name: "autospectra",
tool_name: "api_request",
arguments: {
method: "GET",
url: "https://api.example.com/users/1",
headers: {
"Accept": "application/json"
}
}
});
// Validate an API response against a schema
await use_mcp_tool({
server_name: "autospectra",
tool_name: "validate_schema",
arguments: {
response: responseData,
schema: {
type: "object",
required: ["id", "name", "email"],
properties: {
id: { type: "number" },
name: { type: "string" },
email: { type: "string", format: "email" }
}
}
}
});
Interactive Debugging
// Create a debug test session
await use_mcp_tool({
server_name: "autospectra",
tool_name: "debug_test",
arguments: {
testName: "login-flow",
testScript: `
step('step1', 'navigate', { url: 'https://example.com/login' });
step('step2', 'type', { selector: '#username', text: 'testuser' });
step('step3', 'click', { selector: '#login-button' });
`,
breakAt: ['step3'],
runImmediately: true
}
});
For complete documentation of all available tools and their parameters, see:
- Usage Guide
- API Testing Guide
- Current Tools List
Documentation
AutoSpectra provides comprehensive documentation of its tooling capabilities:
- Tools Documentation Index - Overview and index of all tools documentation
- Current Tools List - Complete reference of all currently available tools with parameters and examples
- Future Tool Enhancements - Roadmap of planned enhancements and missing tools
Project Structure
autospectra-mcp-server/
├── docs/ # Documentation
│ ├── guides/ # User and developer guides
│ ├── api/ # API documentation
│ └── examples/ # Example usage
├── scripts/ # Utility and helper scripts
├── src/ # Source code
│ ├── automation/ # Browser automation
│ ├── computerUse/ # Claude computer use integration
│ ├── frameworks/ # Test framework integration
│ ├── nlp/ # NLP functionality
│ ├── server/ # Server-specific code
│ └── utils/ # Utilities
├── tests/ # Test files
│ ├── integration/ # Integration tests
│ ├── unit/ # Unit tests
│ └── e2e/ # End-to-end tests
Integration with AI Agents
AutoSpectra seamlessly integrates with any AI agent supporting the MCP protocol:
- Universal Compatibility: Works with Claude, ChatGPT, Gemini, Perplexity, and more
- Advanced Capabilities: Access specialized features like Claude's Computer Use
- Flexible Workflows: Combine local and cloud-based automation
See the AI Integration Guide for more information.
Platform Integrations
AutoSpectra works with various AI platforms and development environments:
- Claude Desktop/Cloud: Enhanced automation with Computer Use capabilities
- VS Code Extensions: Seamless integration with development workflows
- ChatGPT & OpenAI: Full support for GPT-based assistants
- Gemini & Other Models: Compatible with all major AI platforms
See the Platform Integration Guide for more information.
Docker Support
# Build the Docker image
npm run docker:build
# Run with Docker
npm run docker:run
Testing
# Run all tests
npm run test:all
# Run specific tests
npm run test:accessibility
npm run test:computer-use
npm run test:e2e
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for more information.
License
This project is licensed under the MIT License - see the LICENSE file for details.
AutoSpectra
Project Details
- samuelvinay91/autospectra-mcp-server
- Last Updated: 4/12/2025
Categories
Recomended MCP Servers
Integrate the Productboard API into agentic workflows via MCP
This repository is for development of the Azure MCP Server, bringing the power of Azure to your agents.
MCP server to interact with LogSeq via its Local HTTP API - enabling AI assistants like Claude to...
python mcp LINE
Not just another MCP filesystem. Optimized file operations with smart context management and token-efficient partial reading/editing. Process massive...
ChromaDB-powered local indexing support for Cursor, exposed as an MCP server
Powerful Model Context Protocol (MCP) implementation for visualizing directory structures with real-time updates, configurable depth, and smart exclusions...
Repository for MCP screenshot functionality
Model Context Protocol (MCP) server implementation using Google OR-Tools for constraint solving