DynamoDB MCP Server
A Model Context Protocol server for managing Amazon DynamoDB resources. This server provides tools for table management, capacity management, and data operations.
Author
Iman Kamyabi (ikmyb@icloud.com)
Features
Table Management
- Create new DynamoDB tables with customizable configurations
- List existing tables
- Get detailed table information
- Configure table settings
Index Management
- Create and manage Global Secondary Indexes (GSI)
- Update GSI capacity
- Create Local Secondary Indexes (LSI)
Capacity Management
- Update provisioned read/write capacity units
- Manage table throughput settings
Data Operations
- Insert or replace items in tables
- Retrieve items by primary key
- Update specific item attributes
- Query tables with conditions
- Scan tables with filters
Neo4j Action Tracking
- Record all MCP actions in a Neo4j graph database
- Find patterns in action sequences
- Get recommendations based on historical data
- Track relationships between different MCPs
- Build a knowledge graph of team actions
Note: Delete operations are not supported to prevent accidental data loss.
Setup
- Install dependencies:
npm install
- Configure AWS credentials as environment variables:
export AWS_ACCESS_KEY_ID="your_access_key"
export AWS_SECRET_ACCESS_KEY="your_secret_key"
export AWS_REGION="your_region"
- Configure Neo4j connection (required for action tracking):
export NEO4J_URI="bolt://localhost:7687"
export NEO4J_USERNAME="neo4j"
export NEO4J_PASSWORD="your_password"
- Initialize Neo4j schema (first-time setup):
npm run init-neo4j
- Build the server:
npm run build
- Start the server:
npm start
- Enable Docker container (optional):
docker build -t mcp/dynamodb-mcp-server -f Dockerfile .
docker run -p 3000:3000 -e AWS_ACCESS_KEY_ID -e AWS_SECRET_ACCESS_KEY -e AWS_REGION -e NEO4J_URI -e NEO4J_USERNAME -e NEO4J_PASSWORD mcp/dynamodb-mcp-server
Configuration
Environment Variables
AWS_ACCESS_KEY_ID
: Your AWS access keyAWS_SECRET_ACCESS_KEY
: Your AWS secret access keyAWS_REGION
: Your AWS region (e.g., us-east-1)AWS_SESSION_TOKEN
: (Optional) Session token for temporary credentialsNEO4J_URI
: URI for Neo4j database connectionNEO4J_USERNAME
: Username for Neo4j databaseNEO4J_PASSWORD
: Password for Neo4j databaseCURSOR_USER_ID
: (Optional) Default user ID for Cursor integrationCURSOR_USER_EMAIL
: (Optional) Default user email for Cursor integrationCURSOR_USER_NAME
: (Optional) Default user name for Cursor integrationCURSOR_USER_TEAM
: (Optional) Default user team for Cursor integration
Neo4j Setup
For optimal performance, create the following indexes in your Neo4j database:
CREATE CONSTRAINT IF NOT EXISTS FOR (user:User) REQUIRE user.id IS UNIQUE;
CREATE CONSTRAINT IF NOT EXISTS FOR (mcp:MCP) REQUIRE mcp.id IS UNIQUE;
CREATE CONSTRAINT IF NOT EXISTS FOR (action:Action) REQUIRE action.id IS UNIQUE;
CREATE INDEX IF NOT EXISTS FOR (user:User) ON (user.email);
CREATE INDEX IF NOT EXISTS FOR (user:User) ON (user.team);
CREATE INDEX IF NOT EXISTS FOR (action:Action) ON (action.type);
CREATE INDEX IF NOT EXISTS FOR (action:Action) ON (action.name);
CREATE FULLTEXT INDEX actionContext IF NOT EXISTS FOR (a:Action) ON EACH [a.name, a.type];
The fulltext index enables context-based action recommendations.
Tools
create_table
Creates a new DynamoDB table with specified configuration.
Parameters:
tableName
: Name of the table to createpartitionKey
: Name of the partition keypartitionKeyType
: Type of partition key (S=String, N=Number, B=Binary)sortKey
: (Optional) Name of the sort keysortKeyType
: (Optional) Type of sort keyreadCapacity
: Provisioned read capacity unitswriteCapacity
: Provisioned write capacity units
Example:
{
"tableName": "Users",
"partitionKey": "userId",
"partitionKeyType": "S",
"readCapacity": 5,
"writeCapacity": 5
}
list_tables
Lists all DynamoDB tables in the account.
Parameters:
limit
: (Optional) Maximum number of tables to returnexclusiveStartTableName
: (Optional) Name of the table to start from for pagination
Example:
{
"limit": 10
}
describe_table
Gets detailed information about a DynamoDB table.
Parameters:
tableName
: Name of the table to describe
Example:
{
"tableName": "Users"
}
create_gsi
Creates a global secondary index on a table.
Parameters:
tableName
: Name of the tableindexName
: Name of the new indexpartitionKey
: Partition key for the indexpartitionKeyType
: Type of partition keysortKey
: (Optional) Sort key for the indexsortKeyType
: (Optional) Type of sort keyprojectionType
: Type of projection (ALL, KEYS_ONLY, INCLUDE)nonKeyAttributes
: (Optional) Non-key attributes to projectreadCapacity
: Provisioned read capacity unitswriteCapacity
: Provisioned write capacity units
Example:
{
"tableName": "Users",
"indexName": "EmailIndex",
"partitionKey": "email",
"partitionKeyType": "S",
"projectionType": "ALL",
"readCapacity": 5,
"writeCapacity": 5
}
update_gsi
Updates the provisioned capacity of a global secondary index.
Parameters:
tableName
: Name of the tableindexName
: Name of the index to updatereadCapacity
: New read capacity unitswriteCapacity
: New write capacity units
Example:
{
"tableName": "Users",
"indexName": "EmailIndex",
"readCapacity": 10,
"writeCapacity": 10
}
create_lsi
Creates a local secondary index on a table (must be done during table creation).
Parameters:
tableName
: Name of the tableindexName
: Name of the new indexpartitionKey
: Partition key for the tablepartitionKeyType
: Type of partition keysortKey
: Sort key for the indexsortKeyType
: Type of sort keyprojectionType
: Type of projection (ALL, KEYS_ONLY, INCLUDE)nonKeyAttributes
: (Optional) Non-key attributes to projectreadCapacity
: (Optional) Provisioned read capacity unitswriteCapacity
: (Optional) Provisioned write capacity units
Example:
{
"tableName": "Users",
"indexName": "CreatedAtIndex",
"partitionKey": "userId",
"partitionKeyType": "S",
"sortKey": "createdAt",
"sortKeyType": "N",
"projectionType": "ALL"
}
update_capacity
Updates the provisioned capacity of a table.
Parameters:
tableName
: Name of the tablereadCapacity
: New read capacity unitswriteCapacity
: New write capacity units
Example:
{
"tableName": "Users",
"readCapacity": 10,
"writeCapacity": 10
}
put_item
Inserts or replaces an item in a table.
Parameters:
tableName
: Name of the tableitem
: Item to put into the table (as JSON object)
Example:
{
"tableName": "Users",
"item": {
"userId": "123",
"name": "John Doe",
"email": "john@example.com"
}
}
get_item
Retrieves an item from a table by its primary key.
Parameters:
tableName
: Name of the tablekey
: Primary key of the item to retrieve
Example:
{
"tableName": "Users",
"key": {
"userId": "123"
}
}
update_item
Updates specific attributes of an item in a table.
Parameters:
tableName
: Name of the tablekey
: Primary key of the item to updateupdateExpression
: Update expressionexpressionAttributeNames
: Attribute name mappingsexpressionAttributeValues
: Values for the update expressionconditionExpression
: (Optional) Condition for updatereturnValues
: (Optional) What values to return
Example:
{
"tableName": "Users",
"key": {
"userId": "123"
},
"updateExpression": "SET #n = :name",
"expressionAttributeNames": {
"#n": "name"
},
"expressionAttributeValues": {
":name": "Jane Doe"
}
}
query_table
Queries a table using key conditions and optional filters.
Parameters:
tableName
: Name of the tablekeyConditionExpression
: Key condition expressionexpressionAttributeValues
: Values for the key condition expressionexpressionAttributeNames
: (Optional) Attribute name mappingsfilterExpression
: (Optional) Filter expression for resultslimit
: (Optional) Maximum number of items to return
Example:
{
"tableName": "Users",
"keyConditionExpression": "userId = :id",
"expressionAttributeValues": {
":id": "123"
}
}
scan_table
Scans an entire table with optional filters.
Parameters:
tableName
: Name of the tablefilterExpression
: (Optional) Filter expressionexpressionAttributeValues
: (Optional) Values for the filter expressionexpressionAttributeNames
: (Optional) Attribute name mappingslimit
: (Optional) Maximum number of items to return
Example:
{
"tableName": "Users",
"filterExpression": "age > :minAge",
"expressionAttributeValues": {
":minAge": 21
}
}
upassistant_get_item_by_id
Retrieves an UpAssistant item by id from the correct table based on environment (uat/prod).
Parameters:
id
: ID of the item to retrieveenv
: Environment: ‘uat’ or ‘prod’
Example:
{
"id": "97729d8e-b722-4822-9490-a900cec81260",
"env": "prod"
}
upassistant_put_item
Puts an UpAssistant item into the correct table based on environment (uat/prod).
Parameters:
item
: Item to put into the table (as JSON object)env
: Environment: ‘uat’ or ‘prod’
Example:
{
"item": {
"id": "97729d8e-b722-4822-9490-a900cec81260",
"createdAt": "2024-10-29T10:22:47.109375",
"description": "Birlikte etkin dinleme çalışması yapalım mı?",
"extra": {},
"frequencyPenalty": "0",
"introductionMessages": [
{
"type": "default",
"value": "Merhaba! nnBirlikte deneme yapmadan önce işe yaradığını gördüğüm birkaç ipucu paylaşayım:
nn- Karşındakine tam dikkatini ver - telefonu bir kenara bırak!
n- Sadece sözleri değil, beden dilini de okun- Sözünü kesme, sabırla dinlen- "Seni anlıyorum" demek yerine, duyduklarını özetlen- Merak et ve soru sor - ama sorgulamak için değil, anlamak için!n- Empati kur - "Ben olsam ne hissederdim?" diye düşünnnBöyle sohbetler daha keyifli ve anlamlı oluyor.. nnNe dersin, bir deneyelim mi?
"
},
{
"type": "user-input",
"value": "Konuşma kiminle olacak? [BLANK]Konuşma ne hakkında olacak? [BLANK]"
}
],
"maxTokens": "800",
"modelName": "GPT-4o",
"name": "Etkin Dinleme",
"presencePenalty": "1.0",
"prompt": "",
"src": "https://upwagmidevcontent234355-upwagmitec.s3.us-east-1.amazonaws.com/public/up_app_gorseller/Etkin+dinleme.jpeg",
"status": true,
"temperature": "0.9",
"template": [
{
"key": "instructions",
"title": "Instructions:",
"type": "name-value-list",
"value": []
},
{
"key": "additionalConsideration",
"title": "Additional Consideration:",
"type": "name-value-list",
"value": []
}
],
"title": "Birlikte etkin dinleme çalışması yapalım mı?",
"topP": "0.95",
"type": "user-input",
"updatedAt": "2024-12-25T09:39:42.272974",
"userId": "7e30775e-cbfc-4fb1-8d4b-7bac7e7210af"
},
"env": "prod"
}
Sample Questions
Here are some example questions you can ask Claude when using this DynamoDB MCP server:
Table Management
- “Create a new DynamoDB table called ‘Products’ with a partition key ‘productId’ (string) and sort key ‘timestamp’ (number)”
- “List all DynamoDB tables in my account”
- “What’s the current configuration of the Users table?”
- “Add a global secondary index on the email field of the Users table”
Capacity Management
- “Update the Users table capacity to 20 read units and 15 write units”
- “Scale up the EmailIndex GSI capacity on the Users table”
- “What’s the current provisioned capacity for the Orders table?”
Data Operations
- “Insert a new user with ID ‘123’, name ‘John Doe’, and email ‘john@example.com’”
- “Get the user with ID ‘123’”
- “Update the email address for user ‘123’ to ‘john.doe@example.com’”
- “Find all orders placed by user ‘123’”
- “List all users who are over 21 years old”
- “Query the EmailIndex to find the user with email ‘john@example.com’”
Building
Docker:
docker build -t mcp/dynamodb-mcp-server -f Dockerfile .
Usage with Cursor Desktop
Add this to your cursor_desktop_config.json
:
{
"mcpServers": {
"dynamodb": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"AWS_ACCESS_KEY_ID",
"-e",
"AWS_SECRET_ACCESS_KEY",
"-e",
"AWS_REGION",
"-e",
"NEO4J_URI",
"-e",
"NEO4J_USERNAME",
"-e",
"NEO4J_PASSWORD"
],
"env": {
"AWS_ACCESS_KEY_ID": "your_access_key",
"AWS_SECRET_ACCESS_KEY": "your_secret_key",
"AWS_REGION": "your_region",
"NEO4J_URI": "bolt://your-neo4j-instance:7687",
"NEO4J_USERNAME": "neo4j",
"NEO4J_PASSWORD": "your_password"
},
"includeAuth": true,
"authHeaders": {
"cursor-auth": "${BASE64_ENCODED_USER_INFO}"
}
}
}
}
The cursor-auth
header will be automatically populated with the current user’s information when you configure "includeAuth": true
.
Development
To run in development mode with auto-reloading:
npm run dev
Neo4j Action Tracking
This MCP server includes integrated Neo4j action tracking to record and analyze MCP actions across different services. This helps in:
- Recording all actions taken through MCPs
- Finding patterns in action sequences
- Suggesting next actions based on historical data
- Recommending actions based on context
- Tracking user identity and team membership
- Building organizational memory and knowledge retention
Cursor Integration
The MCP server now includes full integration with Cursor, allowing actions to be attributed to specific users:
{
"mcpServers": {
"dynamodb": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"AWS_ACCESS_KEY_ID",
"-e",
"AWS_SECRET_ACCESS_KEY",
"-e",
"AWS_REGION",
"-e",
"NEO4J_URI",
"-e",
"NEO4J_USERNAME",
"-e",
"NEO4J_PASSWORD",
"mcp/dynamodb-mcp-server"
],
"env": {
"AWS_ACCESS_KEY_ID": "your_access_key",
"AWS_SECRET_ACCESS_KEY": "your_secret_key",
"AWS_REGION": "your_region",
"NEO4J_URI": "bolt://your-neo4j-instance:7687",
"NEO4J_USERNAME": "neo4j",
"NEO4J_PASSWORD": "your_password"
},
"includeAuth": true,
"authHeaders": {
"cursor-auth": "<BASE64_ENCODED_USER_INFO>"
}
}
}
}
The cursor-auth
header should contain base64-encoded JSON with user identity information:
{
"userId": "unique_user_id",
"userName": "User's Display Name",
"userEmail": "user@example.com",
"userTeam": "Engineering"
}
User Identity Management
The Neo4j action tracking system now includes enhanced user identity features:
- User Nodes: Tracked in Neo4j with attributes like name, email, and team
- Identity Preservation: Users are consistently identified across sessions
- Team Analysis: Actions can be analyzed at both individual and team levels
- Organization Insights: Build understanding of how different teams interact with resources
Action Tracking Tools
record_action
Records an MCP action in the Neo4j graph database.
Parameters:
userId
: ID of the user performing the actionuserName
: Name of the usermcpId
: ID of the MCP being usedmcpType
: Type of MCP (DynamoDB, Mattermost, Jira, etc.)mcpName
: Name of the MCP instanceactionType
: Type of action being performedactionName
: Specific action nameparameters
: Action parametersresult
: Action resultstatus
: Status of the action (“success” or “failure”)
Example:
{
"userId": "user123",
"userName": "John Doe",
"mcpId": "mattermost-mcp",
"mcpType": "Mattermost",
"mcpName": "Team Chat",
"actionType": "message",
"actionName": "post_message",
"parameters": {
"channelId": "general",
"message": "Hello team!"
},
"result": {
"messageId": "abc123"
},
"status": "success"
}
get_similar_actions
Finds similar actions to the current one.
Parameters:
mcpType
: Type of MCPactionType
: Type of actionparameters
: Parameters of the actionlimit
: (Optional) Maximum number of similar actions to return
Example:
{
"mcpType": "DynamoDB",
"actionType": "table_management",
"parameters": {
"tableName": "Users"
}
}
get_user_history
Gets a user’s action history.
Parameters:
userId
: ID of the userlimit
: (Optional) Maximum number of actions to return
Example:
{
"userId": "user123",
"limit": 10
}
suggest_next_action
Suggests the next action based on typical patterns.
Parameters:
userId
: ID of the usermcpType
: Type of MCPcurrentActionType
: Type of the current actioncurrentParameters
: Parameters of the current action
Example:
{
"userId": "user123",
"mcpType": "DynamoDB",
"currentActionType": "create_table",
"currentParameters": {
"tableName": "Users"
}
}
get_action_recommendations
Gets action recommendations based on a context description.
Parameters:
userId
: ID of the usercontext
: Context description to find relevant actions
Example:
{
"userId": "user123",
"context": "setting up a new user authentication system"
}
Benefits of Action Tracking
The Neo4j action tracking system provides several key benefits:
- Knowledge Retention: Captures organizational knowledge that would otherwise be lost
- Pattern Recognition: Identifies common workflows and successful approaches
- Smart Recommendations: Suggests relevant actions based on historical patterns
- Cross-Service Insights: Shows dependencies between different systems
- Team Collaboration: Enhances knowledge sharing between team members
- Workflow Optimization: Identifies inefficient patterns and bottlenecks
- Time Savings: Reduces rediscovery of solutions and minimizes duplicated efforts
As your team uses the system more, the Neo4j knowledge graph becomes increasingly valuable, providing deeper insights and more accurate recommendations.
Cross-MCP Integration
The Neo4j Action Tracking system is designed to work across multiple MCPs including:
- DynamoDB MCP (this server)
- Mattermost MCP
- Jira MCP
- And other future MCPs
This integration allows your team to build a comprehensive knowledge graph of actions taken across different systems, enabling smart recommendations and workflow optimizations.
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
DynamoDB Resource Manager
Project Details
- yusufferdogan/dynamodb-mcp-server
- MIT License
- Last Updated: 5/28/2025
Recomended MCP Servers
This read-only MCP Server allows you to connect to Azure Data Lake Storage data from Claude Desktop through...
A complete walkthrough on how to build an MCP server to serve a trained Random Forest model and...
MCP web search using perplexity without any API KEYS
一个基于 Node.js 和 TypeScript 的 MCP 服务,用于读写图片元数据
Yonote MCP Server Prototype
The MATLAB MCP server provides AI users with powerful scientific computing and data analysis capabilities. It allows users...
MCP aggregator for batching multiple tool calls into a single request. Reduces overhead, saves tokens, and simplifies...