AI Customer Support Bot - MCP Server
A Model Context Protocol (MCP) server that provides AI-powered customer support using Cursor AI and Glama.ai integration.
Features
- Real-time context fetching from Glama.ai
- AI-powered response generation with Cursor AI
- Batch processing support
- Priority queuing
- Rate limiting
- User interaction tracking
- Health monitoring
- MCP protocol compliance
Prerequisites
- Python 3.8+
- PostgreSQL database
- Glama.ai API key
- Cursor AI API key
Installation
- Clone the repository:
git clone <repository-url>
cd <repository-name>
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venvScriptsactivate
- Install dependencies:
pip install -r requirements.txt
- Create a
.env
file based on.env.example
:
cp .env.example .env
- Configure your
.env
file with your credentials:
# API Keys
GLAMA_API_KEY=your_glama_api_key_here
CURSOR_API_KEY=your_cursor_api_key_here
# Database
DATABASE_URL=postgresql://user:password@localhost/customer_support_bot
# API URLs
GLAMA_API_URL=https://api.glama.ai/v1
# Security
SECRET_KEY=your_secret_key_here
# MCP Server Configuration
SERVER_NAME="AI Customer Support Bot"
SERVER_VERSION="1.0.0"
API_PREFIX="/mcp"
MAX_CONTEXT_RESULTS=5
# Rate Limiting
RATE_LIMIT_REQUESTS=100
RATE_LIMIT_PERIOD=60
# Logging
LOG_LEVEL=INFO
- Set up the database:
# Create the database
createdb customer_support_bot
# Run migrations (if using Alembic)
alembic upgrade head
Running the Server
Start the server:
python app.py
The server will be available at http://localhost:8000
API Endpoints
1. Root Endpoint
GET /
Returns basic server information.
2. MCP Version
GET /mcp/version
Returns supported MCP protocol versions.
3. Capabilities
GET /mcp/capabilities
Returns server capabilities and supported features.
4. Process Request
POST /mcp/process
Process a single query with context.
Example request:
curl -X POST http://localhost:8000/mcp/process
-H "Content-Type: application/json"
-H "X-MCP-Auth: your-auth-token"
-H "X-MCP-Version: 1.0"
-d '{
"query": "How do I reset my password?",
"priority": "high",
"mcp_version": "1.0"
}'
5. Batch Processing
POST /mcp/batch
Process multiple queries in a single request.
Example request:
curl -X POST http://localhost:8000/mcp/batch
-H "Content-Type: application/json"
-H "X-MCP-Auth: your-auth-token"
-H "X-MCP-Version: 1.0"
-d '{
"queries": [
"How do I reset my password?",
"What are your business hours?",
"How do I contact support?"
],
"mcp_version": "1.0"
}'
6. Health Check
GET /mcp/health
Check server health and service status.
Rate Limiting
The server implements rate limiting with the following defaults:
- 100 requests per 60 seconds
- Rate limit information is included in the health check endpoint
- Rate limit exceeded responses include reset time
Error Handling
The server returns structured error responses in the following format:
{
"code": "ERROR_CODE",
"message": "Error description",
"details": {
"timestamp": "2024-02-14T12:00:00Z",
"additional_info": "value"
}
}
Common error codes:
RATE_LIMIT_EXCEEDED
: Rate limit exceededUNSUPPORTED_MCP_VERSION
: Unsupported MCP versionPROCESSING_ERROR
: Error processing requestCONTEXT_FETCH_ERROR
: Error fetching context from Glama.aiBATCH_PROCESSING_ERROR
: Error processing batch request
Development
Project Structure
.
├── app.py # Main application file
├── database.py # Database configuration
├── middleware.py # Middleware (rate limiting, validation)
├── models.py # Database models
├── mcp_config.py # MCP-specific configuration
├── requirements.txt # Python dependencies
└── .env # Environment variables
Adding New Features
- Update
mcp_config.py
with new configuration options - Add new models in
models.py
if needed - Create new endpoints in
app.py
- Update capabilities endpoint to reflect new features
Security
- All MCP endpoints require authentication via
X-MCP-Auth
header - Rate limiting is implemented to prevent abuse
- Database credentials should be kept secure
- API keys should never be committed to version control
Monitoring
The server provides health check endpoints for monitoring:
- Service status
- Rate limit usage
- Connected services
- Processing times
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
For support, please create an issue in the repository or contact the development team.
AI Customer Support Bot
Project Details
- ChiragPatankar/AI-Customer-Support-Bot--MCP-Server
- MIT License
- Last Updated: 4/6/2025
Recomended MCP Servers
基于epoll模型的http服务器 + CSAPP一书配套的实验中,其中3个经典实验的源码
The implementation of Model Context Protocol (MCP) server for VictoriaLogs.
Youtube Transcript Download MCP
MCP implementation of https://linkd.inc/
2025年1月に再構築したグローバルな設定リポです(日本語)
Add Obsidian integrations like semantic search and custom Templater prompts to Claude or any MCP client.
Alchemy's official MCP Server. Allow AI agents to interact with Alchemy's blockchain APIs.
MCP Server for running Bruno Collections
MCP Implementation for HubSpot