✨ From vibe coding to vibe deployment. UBOS MCP turns ideas into infra with one message.

Learn more

Search Engine with RAG and MCP

A powerful search engine that combines LangChain, Model Context Protocol (MCP), Retrieval-Augmented Generation (RAG), and Ollama to create an agentic AI system capable of searching the web, retrieving information, and providing relevant answers.

Features

  • Web search capabilities using the Exa API
  • Web content retrieval using FireCrawl
  • RAG (Retrieval-Augmented Generation) for more relevant information extraction
  • MCP (Model Context Protocol) server for standardized tool invocation
  • Support for both local LLMs via Ollama and cloud-based LLMs via OpenAI
  • Flexible architecture supporting direct search, agent-based search, or server mode
  • Comprehensive error handling and graceful fallbacks
  • Python 3.13+ with type hints
  • Asynchronous processing for efficient web operations

Architecture

This project integrates several key components:

  1. Search Module: Uses Exa API to search the web and FireCrawl to retrieve content
  2. RAG Module: Embeds documents, chunks them, and stores them in a FAISS vector store
  3. MCP Server: Provides a standardized protocol for tool invocation
  4. Agent: LangChain-based agent that uses the search and RAG capabilities

Project Structure

search-engine-with-rag-and-mcp/
├── LICENSE              # MIT License
├── README.md            # Project documentation
├── data/                # Data directories
├── docs/                # Documentation
│   └── env_template.md  # Environment variables documentation
├── logs/                # Log files directory (auto-created)
├── src/                 # Main package (source code)
│   ├── __init__.py      
│   ├── core/            # Core functionality
│   │   ├── __init__.py
│   │   ├── main.py      # Main entry point
│   │   ├── search.py    # Web search module
│   │   ├── rag.py       # RAG implementation
│   │   ├── agent.py     # LangChain agent
│   │   └── mcp_server.py # MCP server implementation
│   └── utils/           # Utility modules
│       ├── __init__.py
│       ├── env.py       # Environment variable loading
│       └── logger.py    # Logging configuration
├── pyproject.toml       # Poetry configuration
├── requirements.txt     # Project dependencies
└── tests/               # Test directory

Getting Started

Prerequisites

  • Python 3.13+
  • Poetry (optional, for development)
  • API keys for Exa and FireCrawl
  • (Optional) Ollama installed locally
  • (Optional) OpenAI API key

Installation

  1. Clone the repository
git clone https://github.com/yourusername/search-engine-with-rag-and-mcp.git
cd search-engine-with-rag-and-mcp
  1. Install dependencies
# Using pip
pip install -r requirements.txt

# Or using poetry
poetry install
  1. Create a .env file (use docs/env_template.md as a reference)

Usage

The application has three main modes of operation:

1. Direct Search Mode (Default)

# Using pip
python -m src.core.main "your search query"

# Or using poetry
poetry run python -m src.core.main "your search query"

2. Agent Mode

python -m src.core.main --agent "your search query"

3. MCP Server Mode

python -m src.core.main --server

You can also specify custom host and port:

python -m src.core.main --server --host 0.0.0.0 --port 8080

Using Ollama (Optional)

To use Ollama for local embeddings and LLM capabilities:

  1. Install Ollama: https://ollama.ai/
  2. Pull a model:
ollama pull mistral:latest
  1. Set the appropriate environment variables in your .env file:
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=mistral:latest

Development

This project follows these best practices:

  • Code formatting: Black and isort for consistent code style
  • Type checking: mypy for static type checking
  • Linting: flake8 for code quality
  • Testing: pytest for unit and integration tests
  • Environment Management: python-dotenv for managing environment variables
  • Logging: Structured logging to both console and file

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

  • LangChain for the agent framework
  • Model Context Protocol for the standardized tool invocation
  • Ollama for local LLM capabilities
  • Exa for web search capabilities
  • FireCrawl for web content retrieval

Featured Templates

View More

Start your free trial

Build your solution today. No credit card required.

Sign In

Register

Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.