OpenSCAD MCP Server
A Model Context Protocol (MCP) server that enables users to generate 3D models from text descriptions or images, with a focus on creating parametric 3D models using multi-view reconstruction and OpenSCAD.
Features
- AI Image Generation: Generate images from text descriptions using Google Gemini or Venice.ai APIs
- Multi-View Image Generation: Create multiple views of the same 3D object for reconstruction
- Image Approval Workflow: Review and approve/deny generated images before reconstruction
- 3D Reconstruction: Convert approved multi-view images into 3D models using CUDA Multi-View Stereo
- Remote Processing: Process computationally intensive tasks on remote servers within your LAN
- OpenSCAD Integration: Generate parametric 3D models using OpenSCAD
- Parametric Export: Export models in formats that preserve parametric properties (CSG, AMF, 3MF, SCAD)
- 3D Printer Discovery: Optional network printer discovery and direct printing
Architecture
The server is built using the Python MCP SDK and follows a modular architecture:
openscad-mcp-server/
├── src/
│ ├── main.py # Main application
│ ├── main_remote.py # Remote CUDA MVS server
│ ├── ai/ # AI integrations
│ │ ├── gemini_api.py # Google Gemini API for image generation
│ │ └── venice_api.py # Venice.ai API for image generation (optional)
│ ├── models/ # 3D model generation
│ │ ├── cuda_mvs.py # CUDA Multi-View Stereo integration
│ │ └── code_generator.py # OpenSCAD code generation
│ ├── workflow/ # Workflow components
│ │ ├── image_approval.py # Image approval mechanism
│ │ └── multi_view_to_model_pipeline.py # Complete pipeline
│ ├── remote/ # Remote processing
│ │ ├── cuda_mvs_client.py # Client for remote CUDA MVS processing
│ │ ├── cuda_mvs_server.py # Server for remote CUDA MVS processing
│ │ ├── connection_manager.py # Remote connection management
│ │ └── error_handling.py # Error handling for remote processing
│ ├── openscad_wrapper/ # OpenSCAD CLI wrapper
│ ├── visualization/ # Preview generation and web interface
│ ├── utils/ # Utility functions
│ └── printer_discovery/ # 3D printer discovery
├── scad/ # Generated OpenSCAD files
├── output/ # Output files (models, previews)
│ ├── images/ # Generated images
│ ├── multi_view/ # Multi-view images
│ ├── approved_images/ # Approved images for reconstruction
│ └── models/ # Generated 3D models
├── templates/ # Web interface templates
└── static/ # Static files for web interface
Installation
Clone the repository:
git clone https://github.com/jhacksman/OpenSCAD-MCP-Server.git cd OpenSCAD-MCP-Server
Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venvScriptsactivate
Install dependencies:
pip install -r requirements.txt
Install OpenSCAD:
- Ubuntu/Debian:
sudo apt-get install openscad
- macOS:
brew install openscad
- Windows: Download from openscad.org
- Ubuntu/Debian:
Install CUDA Multi-View Stereo:
git clone https://github.com/fixstars/cuda-multi-view-stereo.git cd cuda-multi-view-stereo mkdir build && cd build cmake .. make
Set up API keys:
- Create a
.env
file in the root directory - Add your API keys:
GEMINI_API_KEY=your-gemini-api-key VENICE_API_KEY=your-venice-api-key # Optional REMOTE_CUDA_MVS_API_KEY=your-remote-api-key # For remote processing
- Create a
Remote Processing Setup
The server supports remote processing of computationally intensive tasks, particularly CUDA Multi-View Stereo reconstruction. This allows you to offload processing to more powerful machines within your LAN.
Server Setup (on the machine with CUDA GPU)
Install CUDA Multi-View Stereo on the server machine:
git clone https://github.com/fixstars/cuda-multi-view-stereo.git cd cuda-multi-view-stereo mkdir build && cd build cmake .. make
Start the remote CUDA MVS server:
python src/main_remote.py
The server will automatically advertise itself on the local network using Zeroconf.
Client Configuration
Configure remote processing in your
.env
file:REMOTE_CUDA_MVS_ENABLED=True REMOTE_CUDA_MVS_USE_LAN_DISCOVERY=True REMOTE_CUDA_MVS_API_KEY=your-shared-secret-key
Alternatively, you can specify a server URL directly:
REMOTE_CUDA_MVS_ENABLED=True REMOTE_CUDA_MVS_USE_LAN_DISCOVERY=False REMOTE_CUDA_MVS_SERVER_URL=http://server-ip:8765 REMOTE_CUDA_MVS_API_KEY=your-shared-secret-key
Remote Processing Features
- Automatic Server Discovery: Find CUDA MVS servers on your local network
- Job Management: Upload images, track job status, and download results
- Fault Tolerance: Automatic retries, circuit breaker pattern, and error tracking
- Authentication: Secure API key authentication for all remote operations
- Health Monitoring: Continuous server health checks and status reporting
Usage
Start the server:
python src/main.py
The server will start on http://localhost:8000
Use the MCP tools to interact with the server:
generate_image_gemini: Generate an image using Google Gemini API
{ "prompt": "A low-poly rabbit with black background", "model": "gemini-2.0-flash-exp-image-generation" }
generate_multi_view_images: Generate multiple views of the same 3D object
{ "prompt": "A low-poly rabbit", "num_views": 4 }
create_3d_model_from_images: Create a 3D model from approved multi-view images
{ "image_ids": ["view_1", "view_2", "view_3", "view_4"], "output_name": "rabbit_model" }
create_3d_model_from_text: Complete pipeline from text to 3D model
{ "prompt": "A low-poly rabbit", "num_views": 4 }
export_model: Export a model to a specific format
{ "model_id": "your-model-id", "format": "obj" // or "stl", "ply", "scad", etc. }
discover_remote_cuda_mvs_servers: Find CUDA MVS servers on your network
{ "timeout": 5 }
get_remote_job_status: Check the status of a remote processing job
{ "server_id": "server-id", "job_id": "job-id" }
download_remote_model_result: Download a completed model from a remote server
{ "server_id": "server-id", "job_id": "job-id", "output_name": "model-name" }
discover_printers: Discover 3D printers on the network
{}
print_model: Print a model on a connected printer
{ "model_id": "your-model-id", "printer_id": "your-printer-id" }
Image Generation Options
The server supports multiple image generation options:
Google Gemini API (Default): Uses the Gemini 2.0 Flash Experimental model for high-quality image generation
- Supports multi-view generation with consistent style
- Requires a Google Gemini API key
Venice.ai API (Optional): Alternative image generation service
- Supports various models including flux-dev and fluently-xl
- Requires a Venice.ai API key
User-Provided Images: Skip image generation and use your own images
- Upload images directly to the server
- Useful for working with existing photographs or renders
Multi-View Workflow
The server implements a multi-view workflow for 3D reconstruction:
- Image Generation: Generate multiple views of the same 3D object
- Image Approval: Review and approve/deny each generated image
- 3D Reconstruction: Convert approved images into a 3D model using CUDA MVS
- Can be processed locally or on a remote server within your LAN
- Model Refinement: Optionally refine the model using OpenSCAD
Remote Processing Workflow
The remote processing workflow allows you to offload computationally intensive tasks to more powerful machines:
- Server Discovery: Automatically discover CUDA MVS servers on your network
- Image Upload: Upload approved multi-view images to the remote server
- Job Processing: Process the images on the remote server using CUDA MVS
- Status Tracking: Monitor the job status and progress
- Result Download: Download the completed 3D model when processing is finished
Supported Export Formats
The server supports exporting models in various formats:
- OBJ: Wavefront OBJ format (standard 3D model format)
- STL: Standard Triangle Language (for 3D printing)
- PLY: Polygon File Format (for point clouds and meshes)
- SCAD: OpenSCAD source code (for parametric models)
- CSG: OpenSCAD CSG format (preserves all parametric properties)
- AMF: Additive Manufacturing File Format (preserves some metadata)
- 3MF: 3D Manufacturing Format (modern replacement for STL with metadata)
Web Interface
The server provides a web interface for:
- Generating and approving multi-view images
- Previewing 3D models from different angles
- Downloading models in various formats
Access the interface at http://localhost:8000/ui/
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
OpenSCAD MCP Server
Project Details
- jhacksman/OpenSCAD-MCP-Server
- Last Updated: 4/21/2025
Recomended MCP Servers
MCP server that provides tools and resources for interacting with n8n API
A Unity MCP server that allows MCP clients like Claude Desktop or Cursor to perform Unity Editor actions.
An MCP Server for querying InfluxDB
A ready-to-use MCP (Model Context Protocol) server template for extending Cursor IDE with custom tools. Deploy your own...
Stdio MCP Server wrapping custom Python runtime (LocalPythonExecutor) from Hugging Faces' `smolagents` framework. The runtime combines the ease...

Postgres MCP Pro supports you and your AI agents throughout the entire development process.
A Model Context Protocol implementation for FHIR
An MCP server that securely interfaces with your iMessage database via the Model Context Protocol (MCP), allowing LLMs...
The Ultimate Model Context Protocol (MCP) Server, providing unified access to a wide variety of useful and powerful...