OpenRouter MCP Server
A Model Context Protocol (MCP) server providing seamless integration with OpenRouter.ai’s diverse model ecosystem. Access various AI models through a unified, type-safe interface with built-in caching, rate limiting, and error handling.
Features
Model Access
- Direct access to all OpenRouter.ai models
- Automatic model validation and capability checking
- Default model configuration support
Performance Optimization
- Smart model information caching (1-hour expiry)
- Automatic rate limit management
- Exponential backoff for failed requests
Unified Response Format
- Consistent
ToolResult
structure for all responses - Clear error identification with
isError
flag - Structured error messages with context
- Consistent
Installation
pnpm install @mcpservers/openrouterai
Configuration
Prerequisites
- Get your OpenRouter API key from OpenRouter Keys
- Choose a default model (optional)
Environment Variables
OPENROUTER_API_KEY=your-api-key-here
OPENROUTER_DEFAULT_MODEL=optional-default-model
Setup
Add to your MCP settings configuration file (cline_mcp_settings.json
or claude_desktop_config.json
):
{
"mcpServers": {
"openrouterai": {
"command": "npx",
"args": ["@mcpservers/openrouterai"],
"env": {
"OPENROUTER_API_KEY": "your-api-key-here",
"OPENROUTER_DEFAULT_MODEL": "optional-default-model"
}
}
}
}
Response Format
All tools return responses in a standardized structure:
interface ToolResult {
isError: boolean;
content: Array<{
type: "text";
text: string; // JSON string or error message
}>;
}
Success Example:
{
"isError": false,
"content": [{
"type": "text",
"text": "{"id": "gen-123", ...}"
}]
}
Error Example:
{
"isError": true,
"content": [{
"type": "text",
"text": "Error: Model validation failed - 'invalid-model' not found"
}]
}
Available Tools
chat_completion
Send messages to OpenRouter.ai models:
interface ChatCompletionRequest {
model?: string;
messages: Array<{role: "user"|"system"|"assistant", content: string}>;
temperature?: number; // 0-2
}
// Response: ToolResult with chat completion data or error
search_models
Search and filter available models:
interface ModelSearchRequest {
query?: string;
provider?: string;
minContextLength?: number;
capabilities?: {
functions?: boolean;
vision?: boolean;
};
}
// Response: ToolResult with model list or error
get_model_info
Get detailed information about a specific model:
{
model: string; // Model identifier
}
validate_model
Check if a model ID is valid:
interface ModelValidationRequest {
model: string;
}
// Response:
// Success: { isError: false, valid: true }
// Error: { isError: true, error: "Model not found" }
Error Handling
The server provides structured errors with contextual information:
// Error response structure
{
isError: true,
content: [{
type: "text",
text: "Error: [Category] - Detailed message"
}]
}
Common Error Categories:
Validation Error
: Invalid input parametersAPI Error
: OpenRouter API communication issuesRate Limit
: Request throttling detectionInternal Error
: Server-side processing failures
Handling Responses:
async function handleResponse(result: ToolResult) {
if (result.isError) {
const errorMessage = result.content[0].text;
if (errorMessage.startsWith('Error: Rate Limit')) {
// Handle rate limiting
}
// Other error handling
} else {
const data = JSON.parse(result.content[0].text);
// Process successful response
}
}
Development
See CONTRIBUTING.md for detailed information about:
- Development setup
- Project structure
- Feature implementation
- Error handling guidelines
- Tool usage examples
# Install dependencies
pnpm install
# Build project
pnpm run build
# Run tests
pnpm test
Changelog
See CHANGELOG.md for recent updates including:
- Unified response format implementation
- Enhanced error handling system
- Type-safe interface improvements
License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
OpenRouter MCP Server
Project Details
- palolxx/openrouteraitest
- Apache License 2.0
- Last Updated: 3/28/2025
Recomended MCP Servers
An MCP server implementation providing a standardized interface for LLMs to interact with the Atla API.
Metabase MCP server provides integration with the Metabase API, enabling LLM with MCP capabilites to directly interact with...
MCP server implementation for Google's Gemini API
This is a simple Api template for Rust ( Axum framework )
ChromaDB-powered local indexing support for Cursor, exposed as an MCP server
MCP tool to allow multiple chains of thought