MCP Docling Server
An MCP server that provides document processing capabilities using the Docling library.
Installation
You can install the package using pip:
pip install -e .
Usage
Start the server using either stdio (default) or SSE transport:
# Using stdio transport (default)
mcp-server-lls
# Using SSE transport on custom port
mcp-server-lls --transport sse --port 8000
If you’re using uv, you can run the server directly without installing:
# Using stdio transport (default)
uv run mcp-server-lls
# Using SSE transport on custom port
uv run mcp-server-lls --transport sse --port 8000
Available Tools
The server exposes the following tools:
convert_document: Convert a document from a URL or local path to markdown format
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR, e.g. [“en”, “fr”] (optional)
convert_document_with_images: Convert a document and extract embedded images
source
: URL or local file path to the document (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)
extract_tables: Extract tables from a document as structured data
source
: URL or local file path to the document (required)
convert_batch: Process multiple documents in batch mode
sources
: List of URLs or file paths to documents (required)enable_ocr
: Whether to enable OCR for scanned documents (optional, default: false)ocr_language
: List of language codes for OCR (optional)
qna_from_document: Create a Q&A document from a URL or local path to YAML format
source
: URL or local file path to the document (required)no_of_qnas
: Number of expected Q&As (optional, default: 5)- Note: This tool requires IBM Watson X credentials to be set as environment variables:
WATSONX_PROJECT_ID
: Your Watson X project IDWATSONX_APIKEY
: Your IBM Cloud API keyWATSONX_URL
: The Watson X API URL (default: https://us-south.ml.cloud.ibm.com)
get_system_info: Get information about system configuration and acceleration status
Example with Llama Stack
https://github.com/user-attachments/assets/8ad34e50-cbf7-4ec8-aedd-71c42a5de0a1
You can use this server with Llama Stack to provide document processing capabilities to your LLM applications. Make sure you have a running Llama Stack server, then configure your INFERENCE_MODEL
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types.shared_params.url import URL
from llama_stack_client import LlamaStackClient
import os
# Set your model ID
model_id = os.environ["INFERENCE_MODEL"]
client = LlamaStackClient(
base_url=f"http://localhost:{os.environ.get('LLAMA_STACK_PORT', '8080')}"
)
# Register MCP tools
client.toolgroups.register(
toolgroup_id="mcp::docling",
provider_id="model-context-protocol",
mcp_endpoint=URL(uri="http://0.0.0.0:8000/sse"))
# Define an agent with MCP toolgroup
agent_config = AgentConfig(
model=model_id,
instructions="""You are a helpful assistant with access to tools to manipulate documents.
Always use the appropriate tool when asked to process documents.""",
toolgroups=["mcp::docling"],
tool_choice="auto",
max_tool_calls=3,
)
# Create the agent
agent = Agent(client, agent_config)
# Create a session
session_id = agent.create_session("test-session")
def _summary_and_qna(source: str):
# Define the prompt
run_turn(f"Please convert the document at {source} to markdown and summarize its content.")
run_turn(f"Please generate a Q&A document with 3 items for source at {source} and display it in YAML format.")
def _run_turn(prompt):
# Create a turn
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Log the response
for log in EventLogger().log(response):
log.print()
_summary_and_qna('https://arxiv.org/pdf/2004.07606')
Caching
The server caches processed documents in ~/.cache/mcp-docling/
to improve performance for repeated requests.
Docling Server
Project Details
- zanetworker/mcp-docling
- MIT License
- Last Updated: 4/12/2025
Recomended MCP Servers
A Python-based MCP server that lets Claude run boto3 code to query and manage AWS resources. Execute powerful...
An MCP Server for WolframAlpha's LLM API, able to return structured knowledge & solve math
Efficient implementation of the Google Drive MCP server
An MCP (Model Context Protocol) server that provides tools for checking Maven dependency versions.
story based implementation for sequential thinking
MCP server to run MATLAB code from LLM via the Matlab Engine API.
Let the grumpy senior dev review your code with this MCP server
MCP Server for Trino
Ancestry MCP server made with Python that allows interactability with .ged (GEDCOM) files
A Model Context Protocol (MCP) integration that enables AI assistants to search for and control Home Assistant devices...