✨ From vibe coding to vibe deployment. UBOS MCP turns ideas into infra with one message.

Learn more

Datadog Model Context Protocol (MCP) 🔍

smithery badge

A Python-based tool to interact with Datadog API and fetch monitoring data from your infrastructure. This MCP provides easy access to monitor states and Kubernetes logs through a simple interface.

Datadog Features 🌟

  • Monitor State Tracking: Fetch and analyze specific monitor states
  • Kubernetes Log Analysis: Extract and format error logs from Kubernetes clusters

Prerequisites 📋

  • Python 3.11+
  • Datadog API and Application keys (with correct permissions)
  • Access to Datadog site

Installation 🔧

Installing via Smithery

To install Datadog for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @didlawowo/mcp-collection --client claude

Required packages:

datadog-api-client
fastmcp
loguru
icecream
python-dotenv
uv

Environment Setup 🔑

Create a .env file with your Datadog credentials:

DD_API_KEY=your_api_key
DD_APP_KEY=your_app_key

Setup Claude Desktop Setup for MCP 🖥️

  1. Install Claude Desktop
# Assuming you're on macOS
brew install claude-desktop

# Or download from official website
https://claude.ai/desktop
  1. Set up Datadog MCP config:
# on mac is 
~/Library/Application Support/Claude/claude_desktop_config.json


# Add this to your claude config json
```json
    "Datadog-MCP-Server": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "datadog-api-client",
        "--with",
        "fastmcp",
        "--with",
        "icecream",
        "--with",
        "loguru",
        "--with",
        "python-dotenv",
        "fastmcp",
        "run",
        "/your-path/mcp-collection/datadog/main.py"
      ],
      "env": {
        "DD_API_KEY": "xxxx",
        "DD_APP_KEY": "xxx"
      }
    },

Usage 💻

get logs

get monitor

Architecture 🏗

  • FastMCP Base: Utilizes FastMCP framework for tool management
  • Modular Design: Separate functions for monitors and logs
  • Type Safety: Full typing support with Python type hints
  • API Abstraction: Wrapped Datadog API calls with error handling

I’ll add a section about MCP and Claude Desktop setup:

Model Context Protocol (MCP) Introduction 🤖

What is MCP?

Model Context Protocol (MCP) is a framework allowing AI models to interact with external tools and APIs in a standardized way. It enables models like Claude to:

  • Access external data
  • Execute commands
  • Interact with APIs
  • Maintain context across conversations

some examples of MCP servers

https://github.com/punkpeye/awesome-mcp-servers?tab=readme-ov-file

Tutorial for setup MCP

https://medium.com/@pedro.aquino.se/how-to-use-mcp-tools-on-claude-desktop-app-and-automate-your-daily-tasks-1c38e22bc4b0

How it works - Available Functions 🛠️

the LLM use provided function to get the data and use it

1. Get Monitor States

get_monitor_states(
    name: str,           # Monitor name to search
    timeframe: int = 1   # Hours to look back
)

Example:


response = get_monitor_states(name="traefik")

# Sample Output
{
    "id": "12345678",
    "name": "traefik",
    "status": "OK",
    "query": "avg(last_5m):avg:traefik.response_time{*} > 1000",
    "message": "Response time is too high",
    "type": "metric alert",
    "created": "2024-01-14T10:00:00Z",
    "modified": "2024-01-14T15:30:00Z"
}

2. Get Kubernetes Logs

get_k8s_logs(
    cluster: str,            # Kubernetes cluster name
    timeframe: int = 5,      # Hours to look back
    namespace: str = None    # Optional namespace filter
)

Example:

logs = get_k8s_logs(
    cluster="prod-cluster",
    timeframe=3,
    namespace="default"
)

# Sample Output
{
    "timestamp": "2024-01-14T22:00:00Z",
    "host": "worker-1",
    "service": "nginx-ingress",
    "pod_name": "nginx-ingress-controller-abc123",
    "namespace": "default",
    "container_name": "controller",
    "message": "Connection refused",
    "status": "error"
}
# Install as MCP extension
cd datadog
task install-mcp

4. Verify Installation

In Claude chat desktop

check datadog connection in claude

setup claude

5. Use Datadog MCP Tools

Security Considerations 🔒

  • Store API keys in .env
  • MCP runs in isolated environment
  • Each tool has defined permissions
  • Rate limiting is implemented

Troubleshooting 🔧

Using MCP Inspector

# Launch MCP Inspector for debugging
task run-mcp-inspector

The MCP Inspector provides:

  • Real-time view of MCP server status
  • Function call logs
  • Error tracing
  • API response monitoring

Common issues and solutions

  1. API Authentication Errors

    Error: (403) Forbidden
    

    ➡️ Check your DD_API_KEY and DD_APP_KEY in .env

  2. MCP Connection Issues

    Error: Failed to connect to MCP server
    

    ➡️ Verify your claude_desktop_config.json path and content

  3. Monitor Not Found

    Error: No monitor found with name 'xxx'
    

    ➡️ Check monitor name spelling and case sensitivity

  4. logs can be found here

alt text

Contributing 🤝

Feel free to:

  1. Open issues for bugs
  2. Submit PRs for improvements
  3. Add new features

Notes 📝

  • API calls are made to Datadog EU site
  • Default timeframe is 1 hour for monitor states
  • Page size limits are set to handle most use cases

Featured Templates

View More
Verified Icon
AI Agents
AI Chatbot Starter Kit
1308 6081 5.0
AI Assistants
AI Chatbot Starter Kit v0.1
130 667
Verified Icon
AI Assistants
Speech to Text
134 1510
AI Agents
AI Video Generator
249 1348 5.0

Start your free trial

Build your solution today. No credit card required.

Sign In

Register

Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.