Databricks MCP Server
A Model Completion Protocol (MCP) server for Databricks that provides access to Databricks functionality via the MCP protocol. This allows LLM-powered tools to interact with Databricks clusters, jobs, notebooks, and more.
Features
- MCP Protocol Support: Implements the MCP protocol to allow LLMs to interact with Databricks
- Databricks API Integration: Provides access to Databricks REST API functionality
- Tool Registration: Exposes Databricks functionality as MCP tools
- Async Support: Built with asyncio for efficient operation
Available Tools
The Databricks MCP Server exposes the following tools:
- list_clusters: List all Databricks clusters
- create_cluster: Create a new Databricks cluster
- terminate_cluster: Terminate a Databricks cluster
- get_cluster: Get information about a specific Databricks cluster
- start_cluster: Start a terminated Databricks cluster
- list_jobs: List all Databricks jobs
- run_job: Run a Databricks job
- list_notebooks: List notebooks in a workspace directory
- export_notebook: Export a notebook from the workspace
- list_files: List files and directories in a DBFS path
- execute_sql: Execute a SQL statement
Installation
Prerequisites
- Python 3.10 or higher
uv
package manager (recommended for MCP servers)
Setup
Install
uv
if you don’t have it already:# MacOS/Linux curl -LsSf https://astral.sh/uv/install.sh | sh # Windows (in PowerShell) irm https://astral.sh/uv/install.ps1 | iex
Restart your terminal after installation.
Clone the repository:
git clone https://github.com/JustTryAI/databricks-mcp-server.git cd databricks-mcp-server
Set up the project with
uv
:# Create and activate virtual environment uv venv # On Windows ..venvScriptsactivate # On Linux/Mac source .venv/bin/activate # Install dependencies in development mode uv pip install -e . # Install development dependencies uv pip install -e ".[dev]"
Set up environment variables:
# Windows set DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net set DATABRICKS_TOKEN=your-personal-access-token # Linux/Mac export DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net export DATABRICKS_TOKEN=your-personal-access-token
You can also create an
.env
file based on the.env.example
template.
Running the MCP Server
To start the MCP server, run:
# Windows
.start_mcp_server.ps1
# Linux/Mac
./start_mcp_server.sh
These wrapper scripts will execute the actual server scripts located in the scripts
directory. The server will start and be ready to accept MCP protocol connections.
You can also directly run the server scripts from the scripts directory:
# Windows
.scriptsstart_mcp_server.ps1
# Linux/Mac
./scripts/start_mcp_server.sh
Querying Databricks Resources
The repository includes utility scripts to quickly view Databricks resources:
# View all clusters
uv run scripts/show_clusters.py
# View all notebooks
uv run scripts/show_notebooks.py
Project Structure
databricks-mcp-server/
├── src/ # Source code
│ ├── __init__.py # Makes src a package
│ ├── __main__.py # Main entry point for the package
│ ├── main.py # Entry point for the MCP server
│ ├── api/ # Databricks API clients
│ ├── core/ # Core functionality
│ ├── server/ # Server implementation
│ │ ├── databricks_mcp_server.py # Main MCP server
│ │ └── app.py # FastAPI app for tests
│ └── cli/ # Command-line interface
├── tests/ # Test directory
├── scripts/ # Helper scripts
│ ├── start_mcp_server.ps1 # Server startup script (Windows)
│ ├── run_tests.ps1 # Test runner script
│ ├── show_clusters.py # Script to show clusters
│ └── show_notebooks.py # Script to show notebooks
├── examples/ # Example usage
├── docs/ # Documentation
└── pyproject.toml # Project configuration
See project_structure.md
for a more detailed view of the project structure.
Development
Code Standards
- Python code follows PEP 8 style guide with a maximum line length of 100 characters
- Use 4 spaces for indentation (no tabs)
- Use double quotes for strings
- All classes, methods, and functions should have Google-style docstrings
- Type hints are required for all code except tests
Linting
The project uses the following linting tools:
# Run all linters
uv run pylint src/ tests/
uv run flake8 src/ tests/
uv run mypy src/
Testing
The project uses pytest for testing. To run the tests:
# Run all tests with our convenient script
.scriptsrun_tests.ps1
# Run with coverage report
.scriptsrun_tests.ps1 -Coverage
# Run specific tests with verbose output
.scriptsrun_tests.ps1 -Verbose -Coverage tests/test_clusters.py
You can also run the tests directly with pytest:
# Run all tests
uv run pytest tests/
# Run with coverage report
uv run pytest --cov=src tests/ --cov-report=term-missing
A minimum code coverage of 80% is the goal for the project.
Documentation
- API documentation is generated using Sphinx and can be found in the
docs/api
directory - All code includes Google-style docstrings
- See the
examples/
directory for usage examples
Examples
Check the examples/
directory for usage examples. To run examples:
# Run example scripts with uv
uv run examples/direct_usage.py
uv run examples/mcp_client_usage.py
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Ensure your code follows the project’s coding standards
- Add tests for any new functionality
- Update documentation as necessary
- Verify all tests pass before submitting
License
This project is licensed under the MIT License - see the LICENSE file for details.
Databricks MCP Server
Project Details
- JustTryAI/databricks-mcp-server
- Last Updated: 4/21/2025
Recomended MCP Servers
A model context protocol server for your Gmail
Easily run glif.app AI workflows inside your LLM: image generators, memes, selfies, and more. Glif supports all major...
An MCP server for the Story SDK and Storyscan Block Explorer
An open source framework for building AI-powered apps with familiar code-centric patterns. Genkit makes it easy to develop,...
A MCP Server for Cosense
强大的MCP翻译服务器!#AiryLarkMCP 🌐 专为专业翻译人员设计: • 三阶段翻译流程:分析规划、精准翻译、全文审校 • 自动识别专业领域术语 • 提供全面翻译质量评估 • 支持多语种互译 • 保持原文风格与专业性 💯 无缝集成Claude/Cursor等支持MCP的AI助手,让AI翻译达到专业水准!
Discord MCP Server for Claude Integration
Code Runner MCP Server
A Model Context Protocol server wrapping the official Notion SDK
MCP to explore websites with llms.txt files