✨ From vibe coding to vibe deployment. UBOS MCP turns ideas into infra with one message.

Learn more

AutoGen MCP Server

smithery badge

An MCP server that provides integration with Microsoft’s AutoGen framework, enabling multi-agent conversations through a standardized interface. This server allows you to create and manage AI agents that can collaborate and solve problems through natural language interactions.

Features

  • Create and manage AutoGen agents with customizable configurations
  • Execute one-on-one conversations between agents
  • Orchestrate group chats with multiple agents
  • Configurable LLM settings and code execution environments
  • Support for both assistant and user proxy agents
  • Built-in error handling and response validation

Installation

Installing via Smithery

To install AutoGen Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @DynamicEndpoints/autogen_mcp --client claude

Manual Installation

  1. Clone the repository:
git clone https://github.com/yourusername/autogen-mcp.git
cd autogen-mcp
  1. Install dependencies:
pip install -e .

Configuration

Environment Variables

  1. Copy .env.example to .env:
cp .env.example .env
  1. Configure the environment variables:
# Path to the configuration file
AUTOGEN_MCP_CONFIG=config.json

# OpenAI API Key (optional, can also be set in config.json)
OPENAI_API_KEY=your-openai-api-key

Server Configuration

  1. Copy config.json.example to config.json:
cp config.json.example config.json
  1. Configure the server settings:
{
  "llm_config": {
    "config_list": [
      {
        "model": "gpt-4",
        "api_key": "your-openai-api-key"
      }
    ],
    "temperature": 0
  },
  "code_execution_config": {
    "work_dir": "workspace",
    "use_docker": false
  }
}

Available Operations

The server supports three main operations:

1. Creating Agents

{
  "name": "create_agent",
  "arguments": {
    "name": "tech_lead",
    "type": "assistant",
    "system_message": "You are a technical lead with expertise in software architecture and design patterns."
  }
}

2. One-on-One Chat

{
  "name": "execute_chat",
  "arguments": {
    "initiator": "agent1",
    "responder": "agent2",
    "message": "Let's discuss the system architecture."
  }
}

3. Group Chat

{
  "name": "execute_group_chat",
  "arguments": {
    "agents": ["agent1", "agent2", "agent3"],
    "message": "Let's review the proposed solution."
  }
}

Error Handling

Common error scenarios include:

  1. Agent Creation Errors
{
  "error": "Agent already exists"
}
  1. Execution Errors
{
  "error": "Agent not found"
}
  1. Configuration Errors
{
  "error": "AUTOGEN_MCP_CONFIG environment variable not set"
}

Architecture

The server follows a modular architecture:

src/
├── autogen_mcp/
│   ├── __init__.py
│   ├── agents.py      # Agent management and configuration
│   ├── config.py      # Configuration handling and validation
│   ├── server.py      # MCP server implementation
│   └── workflows.py   # Conversation workflow management

License

MIT License - See LICENSE file for details

Start your free trial

Build your solution today. No credit card required.

Sign In

Register

Reset Password

Please enter your username or email address, you will receive a link to create a new password via email.